SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 25(7), 789-810(JULY 1995)

ANTLR: A Predicated-L L(k) Parser Generator

T. J. PARR
University of Minnesota, AHPCRC, 1100 Washington Ave S Se 101, Minneapolis, MN 55415, par rt @cm org

AND

R. W. QUONG
School of Electrical Engineering, Purdue University, W. Lafayette, IN 47907, quong@cn. pur due. edu

SUMMARY

Despite the parsing power of LR/LALR algorithms, eg. YACC L programmer s often choose to write
recur sive-descent par ser s by hand to obtain increased flexibility, better error handling, and ease of debug-
ging. Weintroduce ANTLR, a public-domain par ser generator that combinesthe flexibility of hand-coded
parsing with the convenience of a parser generator, which is a component of PCCTS 2 ANTLR has many
featuresthat makeit easier to usethan other language tools. Most important, ANTLR provides predicates
which let the programmer systematically direct the parse via arbitrary expressions using semantic and
syntactic context; in practice, the use of predicates eliminates the need to hand-tweak the ANTLR output,
even for difficult parsing problems. ANTLR also integr atesthe description of lexical and syntactic analysis,
accepts LL(k) grammarsfor £ > 1 with extended BNF notation, and can automatically gener ate abstr act
syntax trees.

ANTLR iswidely used, with over 1000 registered industrial and academic usersin 37 countries. It has
been ported to many popular systems such as the PC, Macintosh, and a variety of UNIX platforms; a
commercial C++ front-end has been developed asa result of one of our industrial collabor ations.

KEY WORDS Parsing Compiler Parser generator Predicates LL(K) parser

INTRODUCTION

Programmers want to use tools that employ mechanisms they understand, that are sufficiently
powerful to solvetheir problem, that are flexible, that automate tedioustasks, and that generate
output that is easily folded into their application. Consider parser generators. Existing parser
generators often fail one or more of these criteria. Consequently, parsers are often written by
hand, especially for languagesthat are context-sensitiveor requirelarge amounts of |ookahead.
Compared to a hand-built recursive-descent parser, table-driven L R/ L L. parsers often do not
have enough parsing strength and can be difficult to understand and debug.

A parser must do much more than just recognize languages. In particular, parsers must
interact with the lexical analyzer (scanner), report parsing errors, construct abstract syntax
trees, and call user actions. Existing parsing tools have focused mainly on the language
recognition strategy, often ignoring the aforementioned tasks.

In this paper, we introduce the ANTLR (ANother Tool for Language Recognition) parser
generator, which addresses all these issues. ANTLR is a component of the Purdue Compiler
Construction Tool Set (PCCTS)?. It constructs human-readable recursive-descent parsers in

0038-0644/95/070789-22$16.00 Received 10 June 1994

(©1995 by John Wiley & Sons, Ltd. Revised 17 November 1994

790 T.J. PARR, R. W. QUONG

C or C++ from pred-L L(k) 3% grammars, namely L L(k) grammars, for & > 1, that support
predicates.

Predicates allow arbitrary semantic and syntactic context to direct the parse in a systematic
way. Asaresult, ANTLR can generate parsers for many context-sensitivelanguages and many
non-L L(k)/ L R(k) context-free languages. Semantic predicates indicate the semantic validity
of applying a production; syntactic predicates are grammar fragmentsthat describe a syntactic
context that must be satisfied before recognizing an associated production. In practice, many
ANTLR users report that developing a pred-L L(k) grammar is easier than developing the
corresponding L k(1) grammar.

In addition to a strong parsing strategy, ANTLR has many features that make it more
programmer-friendly than the majority of LR/ LALR and L L parser generators.

¢ ANTLR integrates the specification of lexical and syntactic analysis. A separate lexical
specification is unnecessary as lexica regular expressions (token descriptions) can be
placed in double-quotes and used as normal token references in an ANTLR grammar.

¢ ANTLR accepts grammar constructsin Extended Backus-Naur Form (EBNF) notation.

¢ ANTLR provides facilitiesfor automatic abstract syntax tree construction.

¢ ANTLR generates recursive-descent parsers in C/C++ so that there isaclear correspon-
dence between the grammar specification and the ANTLR output. Consequently, it is
relatively easy for non-parsing experts to design and debug an ANTLR grammar.

¢ ANTLR has both automatic and manual facilitiesfor error recovery and reporting. The
automatic mechanism is simple and effective for many parsing situations; the manual
mechanism called “parser exception handling” simplifies development of high-quality
error handling.

¢ ANTLR alows each grammar rule to have parameters and return vaues, facilitating
attribute passing during the parse. Because ANTLR converts each rule to a C/C++
function in a recursive descent parser, arule parameter is simply a function parameter.
Additionally, ANTLR rules can have multiple return values.

¢ ANTLRhasnumerousother featuresthat makeit aproduct rather than aresearch project.
ANTLR itself iswritten in highly portable C; its output can be debugged with existing
source-level debuggers and is easily integrated into programmers’ applications.

Ultimately, thetruetest of alanguagetool’s usefulnesslieswith the vast industrial program-
mer community. ANTLR iswidely used in the commercial and academic communities. More
than 1000 registered users in 37 countries have acquired the software since the original 1.00
release in 1992. Severa universities currently teach courses with ANTLR. Many commercial
programmers use ANTLR; we list some examplesin the Appendix.

For example, amajor corporation® has nearly completed and i stestingaunified C/Objective-
C/C++ compiler usingan ANTLR grammar that was derived directly fromthe June 1993 ANSI
X3J16 C++ grammar. [Preliminary measurements show that thisANTLR parser is about 20%
slower, in terms of pure parsing speed, than a hand-built recursive-descent parser that parses
only C/Objective-C, but not C++]. C++ has been traditionally difficult for other LL(1) tools
and L R(1)-based tools such as YACC *. YACC grammars for C++ are extremely fragile with
regards to action placement; i.e., the insertion of an action can introduce conflicts into the
C++ grammar. In contrast, ANTLR grammars are insensitiveto action placement dueto their
LL(k) nature.

The following sections illustrate ANTLR’s specification language and the features that
distinguish it from other parser generators. As this paper is an overview, we have omitted
many details. Refer to the current PCCTS/ANTLR release notes for compl ete usage details.

15/8/1995 18:01 PAGE PROOFS antlr

ANTLR: A PREDICATED-L L(X) PARSER GENERATOR 791
Tablel. ANTLR description elements.

| ltem | Description | Example
Token begins with uppercase letter ID
Tokclass set of tokens (token class) Qperators
~ Tokclass | complement set of Tokclass ~ Keyword
* 1 *
wild card token class g ' mlaEclh [D. or sonething el se */
rule name | beginswith lowercase |etter expr
label: item | label token or rulereference a: t:ID;
<<...>> | user-defined semantic action <<printf("%", t->nane);>>
(...) subrule ("int" | ID| storage._class)
R closure ID("," ID*
(...)+ positive closure slist : (stat | SEM COLON) + ;
{...} optiona {ELSE stat }
<< L. >>7? semantic predicate type : <<is TYPE(str)>>? ID ;
(...)7 syntactic predicate ((list EQ? list EQlist | list)

DESCRIPTION LANGUAGE

An ANTLR description or specification is a collection of rules and actions preceded by a
header in which the user defines required data types, such as the type of an attribute. We
originally borrowed the notation from YACC to reduce the learning curve, but since then, we
have added numerous extensionsfor new ANTLR features such as predicates, specification of
lexical analysis, error reporting, and EBNF grouping. Table | summarizes the elementsin an
ANTLR description.

An ANTLRruleisalist of productionsor alternatives separated by “| ”:

rul e : alternative;
| alternative,

| alternative,
)

where each aternative production is composed of a list of elements; an element is an item
from Table I. In thistable, the“. . . " within the grouping constructs can themselves be lists
of alternatives or items.

Rules may also define arguments and return values. In the following line, there are n
arguments and m return values.

rul ef[arg,,...,arg,] > [retvaly, ..., retval,] : ... ;
The syntax for using arule mirrors its definition,

a : ... rule[arg,, ..,arg,] > [v1, --r U]

Here, the various v; receive the return values from theruler ul e, so that each v»; must be an

15/8/1995 18:01 PAGE PROOFS antlr

792 T.J.PARR, R. W. QUONG

[-value.

We illustrate the major features of ANTLR’s description language via a small example.
Consider parsing the following simple assembly language.

#segnment data

a ds 42

b ds 13

#segnment code
load rl, a
load r2, b
add rl1,r2,r3
print r3

Figure 1 contains a complete ANTLR specification for this problem.

#header <<#i ncl ude "charbuf. h">>

<<mai n() {ANTLR(prog(), stdin); }>>

#t okcl ass OPCODE {"add" "store" "load" "call" "ret" "print" }
#t okcl ass REGQ STER {"r0QO" "r1" "r2" "r3" }

#token "[\ \t]+" <<zzskip();>>

#t oken "\ n" <<zzskip(); zzline++; >>

pr og: "#segment" "data" (data)*

"#segnent" "code" (stat)*

stat: OPCCDE oper ands

oper ands
: 1D
| REQ STER
| REA STER "," NUM
| REA STER "," REG STER "," REGQ STER
dat a: ID "ds" NUM
#t oken NUM "[0-9] +"
#t oken I D "[a-zA-Z] +"

Figure 1. ANTLR recognizer for a simple assembly language.

A description for ANTLR differs from those of other parser generators because regular
expressionsspecifying tokensare specified (#t oken | D) or directly referenced (#segnent)
in the grammar. Thus, both the grammatical and the lexica specification are contained in a
singlefile, eliminating the need to maintain two specifications. ANTLR automatically assigns
token types and generates a scanner description for DLG, the lexical analyzer generator in
PCCTS. Regular expression ambiguities, such as between keyword code and token | D, as

15/8/1995 18:01 PAGE PROOFS antlr

ANTLR: A PREDICATED-L L(X) PARSER GENERATOR 793

theinput “code” could be either token type, are resolved by matching the token specification
mentioned first in the ANTLR grammar.

ANTLR acceptsinputin EBNF, asshownin Tablel, which simplifiesgrammar devel opment
and grammar readability. (Strict BNF accepts neither subrules, closures, nor optional itemsin
agrammar specification.) As afurther notational shorthand, ANTLR accepts arbitrary sets of
tokens called token classes. The user specifies atoken class as a set of tokens or other token
classes. A token classisfunctionally equivalent to a subrulewhose alternatives are its member
tokens; e.q., referencing token classREA STER in Figure 1 isthe same as referencing

("rO" | "r1" | "r2" | "r3")

Using atoken classismore efficient than using asubrul e, because referencing atoken classisa
simple set membership test. In contrast, referencing the equivalent subrule causes a sequential
search of its alternative items because subrule items might be predicates or other rules. The
code to test for set membership is much smaller than a series of i f - el se statements for a
subrule. Note that automaton-based parsers (both L R and L L) automatically perform thistype
of set membership (specifically, a table lookup), but lack the flexibility of recursive-descent
parsers; e.g., recursive-descent parsers directly support programmer-defined stack-based local -
variables.

Note that the grammar in Figure Lisnot LL(1) asit is not |eft-factored. Because ANTLR
generates L L (k) recursive-descent parsers, with &£ > 1, ANTLR grammars require less |eft-
factoring than LL(1) grammars. The grammar in Figure 1 is LL(3), as three symbols of
lookahead suffice to differentiate between the alternatives of oper ands when at theleft edge
of oper ands. In fact, this grammar aso contains decisions that require lookahead of one
symbol (subrule (dat a) *), and two symbols (rule pr og).

ANTLR optimizeslookahead decisionsby using aslittlelookahead as possible, even within
the same decision. For example, although rule oper ands requires three lookahead symbols
to distinguishbetween thelast twoalternatives, ANTL R generates adecision that usesonly one
lookahead symbol to distinguishthefirst alternativefrom the other three. Thus, the programmer
can use the power of £ > 1 lookahead without worrying about efficiency.

User-defined actions can be inserted anywhere in an ANTLR production. Such actions
are often used to perform semantic tests, generate an intermediate representation, or directly
generate atranglation. An action placed at the beginning of the first production of any rule or
subrule is special; these actions are init-actions and can be used to define local variables or
execute code that must be executed before any production is attempted. Thus, an init-action
appliesto all productionsin arule. Local variables are useful for recursively-invoked rules
because a new copy of avariableis available per rule invocation; in contrast, simulating local
variablesin atable-driven parser requires a software stack, which isinconvenient and tedious
to implement.

Actions in an ANTLR grammar may access attributes via labels (attached to token and
rule references) of the form $label rather than the conventional “$:” for some integer 7. By
using symbolsinstead of integer identifiers, grammars are more readable and actions are not
sensitiveto positiona changesto rule elements.

15/8/1995 18:01 PAGE PROOFS antlr

794 T.J PARR, R. W. QUONG

PARSING STRENGTH
LL(k)ParsingFor k > 1

ANTLR pred-LL(k) parsers compare favorably to L R(1) parsers °. In both theory and
practice, there are languages that are LR(1) but not L L(3), and vice versa. Use of k = 2
or k = 3 significantly reduces the need to left-factor rules. In all cases, ANTLR computes
and uses the minimum lookahead necessary for each decision within the grammar, speeding
up grammar analysis and parsing speed and reducing the parser code size. In practice, one
lookahead token suffices for many decisions, so ANTLR parsers are nearly as efficient as
L L(1) recursive-descent parsers.

We now illustrate how an L L(2) grammar can be much simpler to design than an LL(1)
grammar. Consider distinguishingbetween Clabels”l D : ” and C assignment statements“| D
= ..” when parsing. In the following grammar fragment, rule st at requires two lookahead
symbols, and is easily expressed with an L L(2) grammar. This common language feature is
hard to express in an L L(1) grammar, because | D is matched in many grammar locations
making it difficult to left-factor rulesst at and expr .

stat: ID":" stat /* statenment |abel */
| expr ";" /* assignnent stat */
expr: ID "=" expr
| I NT

Although using £ > 1 symbols of lookahead is useful, there are many language constructs
that are not L L(k) for any finite k. Typically, these constructs are context sensitive or reguire
unbounded lookahead (i.e., the entire construct must be seen before it may be uniquely
identified). We outline the predicate mechanism that allows ANTLR to handle many nasty
recognition problemsin the next section.

Predicates

ANTLR supportsthe use of the semantic and syntactic predicates, which | et the programmer
indicate the semantic and syntactic validity of applying a production, allowing ANTLR to
naturally handle many difficult parsing situations. Predicates are described fully elsewhere®.
Here, we present two simple examples demonstrating their power.

Thefirst exampleillustrates semantic predicates. Consider FORTRAN array references and
function calls, which are syntactically identical, but semantically different. Depending on the
type of VAL, the following expression could be either an array reference or afunction call.

VAL(13,1)
One common solutionto resolvethis syntactic ambiguity isfor thelexical analyzer to examine
the symbol table and to return a different lookahead token type based on whether the input

identifier VAL is a variable or afunction. The grammar would then reference different token
types, say, FUNC and VAR, and would be context-free. However, semantic predicates provide

15/8/1995 18:01 PAGE PROOFS antlr

ANTLR: A PREDICATED-L L(X) PARSER GENERATOR 795

amore elegant and more general solution. The same expression that would normally be used
to return different token types may be used to dter the normal LL(k) parsing strategy by
annotating the grammar:

expr : <<isvar(LATEXT(1))>>? ID "\(" exprlist "\)" <<array_ref_action>>
| <<isfunc(LATEXT(1))>>? ID "\(" expr_list "\)" << fn_all_action>>

wherei svar (LATEXT(1)) andi sfunc(LATEXT(1)) are user-defined functions that
examine the symbol table and return trueif first lookahead symbol, LATEXT(1) , isavariable
or afunction, respectively.

A semantic predicate is a user-defined action that evaluates to either true (success) or false
(failure) and, broadly speaking, indicates the semantic validity of continuing with the parse
beyond the predicate. Semantic predicates are specified via“ < < predicate >>?" and may
beinterspersed among the grammar elementson the right hand side of productionslike normal
actions.

We now show how syntactic predicates are used viaexample. Occasionally, the programmer
will face alanguage construct that cannot be parsed with an L R(k) or L L(k) parser even with
the help of semantic predicates. Often these constructs simply require unbounded lookahead,
that is, with a finite lookahead buffer, the parser is unable to determine which of a set of
aternative productionsto predict. We turn to parsing C++ for a nasty example. Quoting from
Ellis and Stroustrup ,

“There is an ambiguity in the grammar involving expression-statements and dec-
larations ... The genera cases cannot be resolved without backtracking ...In par-
ticular, the lookahead needed to disambiguatethis case is not limited.”

The authors use the following exampl es to make their point, where T represents atype:

T(*a) - >n¥7; /| expression-statement with type cast to T
T(*a)(int); /| pointer to function declaration

Clearly, thetwo types of statements are not distinguishablefrom theleft asan arbitrary number
of symbols may be seen before a decision can be made; here, the “- >" symbol is the first
indication that thefirst exampleis a statement. Quoting Ellisand Stroustrup further,

“In a parser with backtracking the disambiguating rule can be stated simply:

1. If it lookslike adeclaration, it is; otherwise
2. if it lookslike an expression, it is; otherwise
3. itisasyntax error”

The solutionin ANTLR isto use asyntactic predicate and simply to do exactly what Ellisand
Stroustrup indicate,

stat: (decl aration)? declaration
| expressi on

15/8/1995 18:01 PAGE PROOFS antlr

796 T.J. PARR, R. W. QUONG

In the first production of rule st at , the syntactic predicate (decl ar at i on) ? indicates
that decl ar ati on is the syntactic context that must be present for the rest of that pro-
duction to succeed. We can interpret the use of “(decl arati on) ?” as“l am not sure if
decl ar ati on will match; let me try it out and, if it does not match, | shall try the next
aternative” Thus, when encountering a valid declaration, the rule decl ar at i on will be
recoghized twice—once as syntactic predicate and once during the actual parse to execute se-
mantic actions. If an expression isfound instead, the declaration rule will be attempted at most
once (decl ar at i on will not be attempted for obvious expressions such as “a=3+4").
Syntactic predicates have the form “(«) ?” and may appear on the left edge of any
production of arule or subrule. The required syntactic condition, «, may be any valid context-
free grammar fragment. Syntactic predicateswereintroducedinto ANTLR version 1.10 &; they
represent aform of selective backtracking that significantly enhances the recognition strength
of normal L L(k) parsingwhilenot significantly increasing the parsetime. (In our example, we
parse local variable declarations twice, but these declarations typically are comprised of only
afew symbolssuchas“i nt i ;” and furthermore, decl ar at i on would not be attempted
for obvious statementslikei f -statements because of the normal finitelookahead prediction).

Attribute parsing

A top-down parser can pass information into rules (attribute inheritance) as well as out
of rules, namely it can perform L-attributed translations %°; ANTLR is no exception. We
illustrate the attribute passing facilitiesof ANTLR viaasimple example. Consider arule that
recognizes declarations for both variable and function parameters. To distinguish between
variables and parameters, we pass the current scope or context into therule.

<<enum ScopeType {G.OBAL, PARAMETER}; >>
gl obal s
: (declaration[G.OBAL])*

f unc: type ID "\(" (declaration[PARAMETER])* "\)"

decl :alr ation[ScopeType context]
type | D << definevariablebased upon $cont ext ; >>

We have adapted the attribute-access notation, in which “$cont ext ” represents the value of
the attribute passed into decl ar at i on from YACC. An attribute can be any valid C or C++

type.

HIGH-LEVEL PROGRAMMER SUPPORT

ANTLR contains a number of features that significantly increase its usability. In this section,
we describe ANTLR'sintegrated lexical and syntactic descriptions, its error reporting facility,
and its automatic tree construction mechanism.

Integration of lexical and syntactic analysis
An ANTLR description contains both the | exi cal-anal y zer specification (for tokens) and the

15/8/1995 18:01 PAGE PROOFS antlr

ANTLR: A PREDICATED-L L(X) PARSER GENERATOR 797

parser specification (the grammar), which eliminates the need to have separate files for each.
ANTLR automatically extracts a lexical analyzer description from the integrated ANTLR
description and passesit to DLG, the lexical analyzer generator in PCCTS.

#token INT "[0-9]+"
stat: "while" expr "do" stat

n

| "return" expr ";"

expr:, INT ("\+" INT)* /* match '+ -separated integers */

Tokens are declared either by a#t oken declaration or by direct reference in the grammar;
thelatter method is especially convenient for keywords. Tokensare specified as regul ar expres-
sions, which must be enclosed in doubl e quotes. For example, the preceding grammar declares
thetoken | NT via#t oken, and it directly refersto thewhi | e keyword as atoken. We have
labeled the specification for | NT for clarity asit is used more than once. Consequently, DLG
would receive six token specifications, one for each double-quoted regular expression.

As with other lexer generators, actions can be attached to token specifications. An action
is executed when the corresponding token is recognized in the input stream. For example, the
#t oken specification (using the C interface)

#t oken "\ n" <<zzline++; zzskip();>>

indicates that when we encounter a newline character (" \n"), we increment the predefined
line number variablezzl i ne and then call thelexica analyzer to find another token, so that
the parser need not see newlines.

ANTLR allowsthe use of multiplelexical analyzers within the same ANTLR description;
this ability can simplify parsing of languages with wildly varying input formats. While other
tools such as LEX allow multiple lexer automata within one description, the programmer is
required to switch automata in lexical actions. This process is difficult without knowing the
grammatical context, and is, therefore, much easier to do within a parser action.

In future versions of ANTLR, we anticipate allowing pred-L L(k) constructs to describe
input tokens. Thisideafrom YACC++* would provide a consistent and powerful description
language.

Error handling

ANTLR has two mechanisms for error reporting and recovery. In the first mechanism,
ANTLR automatically generates error messages using a simple, effective heuristic that is
sufficient for many applications. However, when more sophisticated error handlingisrequired,
say for commercial-quality software, ANTLR provides a second mechanism called parser
exception handling that provides the flexibility of hand-built reporting and recovery in a
convenient framework. We begin by describing ANTLR’s automatic mechanism.

The automatic error handler reports where the error was detected and what was expected
(recovery is discussed below). For example, consider matching the rule st at using the
following grammar fragment,

* YACC++ isaregistered trademark of Compiler Resources, Inc.

15/8/1995 18:01 PAGE PROOFS antlr

798

T.J. PARR, R. W. QUONG

stat: "if" expr "then" stat "else" stat
| "while" expr "do" stat
| VAR ":=" expr ":"
| "begin" (stat)+ "end"

expr: atom ("\+" atom)*

atom I NT

| FLOAT

where | NT, FLOAT, and VAR are defined asinteger, float, and identifier tokens, respectively.
Given the input

34
ANTLR automatically generates the error message

line 1: syntax error at "34" missing {if while VAR begin }
which indicates the first token of the syntax error and the set of tokens that would have been
permissible.

Upon reading the input
if 34+ then i:=1;
the error message would be

line 1: syntax error at "then" mssing {INT FLOAT}.
While correct, these messages could be clearer. Consequently, the user can specify error
classes, which are named sets of tokens, so that ANTLR will report a more meaningful string

in itsdefault error messages. For example, after adding
#errclass Statenent {"if" "while" VAR "begin" }
to the above grammar, the input of “34” would result in the error message
line 1: " 34"

syntax error at nm ssing Statenent.

The description of an error class £ C' consists of tokens, other error classes, and even rules.
If £C containsrule r, we add the FIRST set of » to ECt. This feature is convenient; for
example, we can also specify the error class St at enent via

#errclass Statenent { stat }.

t A tokent isin FIRST of ruler if » might start with at.

15/8/1995 18:01 PAGE PROOFS antlr

ANTLR: A PREDICATED-L L(X) PARSER GENERATOR 799

To recover after a parsing error in rule r, ANTLR consumes tokens until a token in the
FOLLOW setof r isfound*. This simple recovery heuristic works well in many cases. For
example, after reporting the error message due to an incomplete expr , “34 +”, on the input

if 34+ then i:=1;

the parser would look for a token that could follow an expr . Because “t hen” can follow
an expr , the resynchronizer need not consume any tokens. Except for the error message, the
parser returns from expr asif nothing had gone amiss and continues parsing the t hen-part
of thei f statement.

If the above default error mechanism is insufficient, programmers can use a more sophis-
ticated error mechanism called parser exception handling, which has much in common with
C++ exception handling ’; we do not actually use C++ exceptionsin our implementation and,
hence, parser exception handling can be used with either the ANTLR C or C++ interface.
Parser exception handling provides a unified framework for reporting and recovering from
semantic and syntactic errors; note that automatic mechanisms typically do not even consider
semantic errors. Parser exception handling providesnearly theflexibility of ahand-built parser.

We illustrate the use of parser exception handlers by demonstrating how they are used to
generate a better error message than:

line 1: syntax error at "then" mssing {I NI FLOAT }.
for input:

if 34+ then i:=1;
Because we know the context in which the expr production was attempted, an improved
error message would indicate the expression was both in an i f -statement and that it was a
conditional—as opposed to the right-hand-side of an assignment statement, for example. A
better message would be

line 1; if-statenent: malforned conditional at "then"

Oneway to achieve this error message isto modify the original st at grammar as follows

Y Atokent isin FOLLOW of ruler if rule r can befollowed immediately by at.

15/8/1995 18:01 PAGE PROOFS antlr

800 T.J. PARR, R. W. QUONG

stat: "if" e:expr "then" stat {"else" stat }
exception|e]
catch M smat chedToken :
catch NoVi abl eAl t
<<

fprintf(stderr,
"l'ine %: if-statement: malfornmed conditional at \"%\"\n",
zzline, LATEXT(1));

zzconsumeUnt i | Token(THEN) ;

>>

| "while" expr "do" stat

where zzl i ne is the current line number, LATEXT(1) is the text of the first token of
lookahead (using the C interface), and THEN is the token type associated with "t hen".
The notation “e: expr” attaches the label e to the expr rule reference. Labels alows the
exception handler to catch errors encountered specifically during that reference.

Good error handling requires programmer intervention. Automatic mechanisms typically
do not perform well, because they cannot easily analyze the state of the parser (eg., the
symbol stack of a table-driven parser or the program counter of a recursive-descent parser).
Knowing where to report errors and how to recover from them must be done with a program-
mer’s experience. While more programming effort is required than for automatic mechanisms,
ANTLR's parser exception handling provides a convenient, sophisticated mechanism that
rivalsthe flexibility of hand-coded schemes.

Tree construction

The parser often constructs an intermediate form that is to be manipulated by later phases
of the trandation or compilation process. Using a few simple grammar annotations, ANTLR
parsers can automatically construct abstract syntax trees (AST), saving the user from having
to explicitly call tree constructor routines. Nodesin the AST are linked vialeft-most child and
next-sibling pointers.

To create an AST, the user annotates the grammar to indicate what is aroot node, what is
aleaf node, and what is to be excluded from the AST. Tokens in the grammar immediately
followed by “~ " are to be considered subtree root nodes. Tokens suffixed with “! " are to be
excluded from the tree. All other tokens are considered leaf nodes. For example, using the
ANTLR specification in Figure 3 on the input

if 3+4*5 then return 4;
wewould get thetreein Figure 2. Theroot of thistree wouldbe returned asr oot inmai n() .

GENERATED PARSERS

ANTLR generates either C or C++ codefor arecursive-descent parser, in which each grammar
rule is realized by a C or C++ function. We illustrate the structure of these functions by
example. For more information about the C/C++ output and the programmer’s interface, refer

15/8/1995 18:01 PAGE PROOFS antlr

ANTLR: A PREDICATED-L L(K ') PARSER GENERATOR 801

if

|

+—return

| |

33— 4

|

4 —5

Figure 2. The abstract syntax treeresultingfrom*“i f 3+4*5 then return 4;”.Weusetheleft-most-child
and next-sibling links.

to the PCCTS release notes.

Each ANTLR-generated function isasequence of i f -t hen- el se clauses plus an error
clause. Eachii f -t hen- el se clause matches one aternative of the corresponding rule; the
i f condition is a prediction expression for determining the validity of its aternative. For
example, therule st at from the following grammar

#header <<
#i ncl ude "charbuf.h"
#def i ne AST_FI ELDS int token, ival;

>>
<<
/* required function: how to convert fromattribute to AST node */
voi d
zzcr _ast (AST *node, Attrib *cur, int token, char *text)
{
node- >t oken = token;
node- >i val = atoi (text);
}
mai n()
{
AST *root =NULL;
ANTLR(e(&root), stdin);
}
>>
stat: "if"" e "then"! stat ";"!
| "return"” e
e : el ("\+"" el)* ;
el e2 ("*"" e2)* ;
e2 "[0-9]+" ;

Figure 3. ANTLR grammar showing AST construction directivesusing C interface.

15/8/1995 18:01 PAGE PROOFS antlr

802 T.J. PARR, R. W. QUONG

stat: | D COLON st at /* statenment |abel */
| expr SEM COLON /* assignnent stat */
| RETURN expr

expr:, | D ASSI GN expr
| I NT

would result in the following slightly-sanitized C code:
voi d stat(void)

{
zzRULE; zzBLOCK(zzt aspl); zzNMakeO;
if ((LA(1)==1D && (LA(2)==COLON)) {
zzmat ch(1 D); zzCONSUVE;
zzmat ch(COLON) ; 2z CONSUMVE;
stat();

} else {
if ((LA(1)==ID |LA(1)==INT) &&% (LA(2)==SEM COLON| | LA(2)==ASSI&N)) {
expr();
zzmat ch(SEM COLQON) ; 2z CONSUME;
} else {

if ((LA(1)==RETURN)) {
zzmat ch(RETURN) ; 2z CONSUME;
expr();

} else
error-clause;

}

}
zzEXI T(zztaspl);

return;
fail: /* standard error-case code */

}
where LA(¢) isthetokentype of the:'* symbol of lookahead; theterms zz RULE, zz BLOCK,
zzMakeO, and zzEXI T are bookkeeping macros for attribute manipulation. (Note that we
have refrained from specifying lexical regular expressions, using token type labelsinstead, so
that symbols appear in the C output rather than integer token types.)

Note that ANTLR adjusts the amount of lookahead tested even within the same parsing
decisionin an effort to reduce grammar analysistime and the size of theresulting parser. Thus,
prediction expressions examine as few |ookahead symbols as possible. In the above example,
two lookahead symbols must be examined to distinguish between the first two aternatives,
“I D COLON stat” and“expr SEM COLQON’, as both can start with an | D, but only one
lookahead symbol, RETURN, is tested for the third alternative because the RETURN token
alone distinguishesit from the other two productions.

For efficiency, we considered the use of swi t ch-statements rather than a sequence of
i f-then-el ses, but swi t ches turned out to be too restrictive. For example, swi t ches
cannot be used when k£ > 1 or when predicates are needed in the prediction expression. Also,
parsing speed has not been a problem for ANTLR-generated parsers.

15/8/1995 18:01 PAGE PROOFS antlr

ANTLR: A PREDICATED-L L(X) PARSER GENERATOR 803

When semantic predicates are needed to disambiguate two or more alternative productions,
we add the predicate to the prediction expression after the |ookahead membership expression.
For example, the grammar fragment

expr : <<isvar(LATEXT(1))>>? ID "\(" exprlist "\)" <<array_ref_action>>
| <<isfunc(LATEXT(1))>>? ID "\(" expr_list "\)" << fn_call_action>>

1

would result in the following C code (again, we have lightly sanitized the code for clarity):
voi d expr(void)

{
zzRULE; zzBLOCK(zzt aspl); zzNMakeO;
if (LA(1)==ID && isvar(LATEXT(1))) {
zzmat ch(1 D); 2zzCONSUME;
zzmat ch(3); zzCONSUME; /* token type 3 refers to "(" */
expr_list();
zzmat ch(4); /* token type 4 refers to ")" */
array_ref_action
zz CONSUNVE;
} else {
if (LA(1)==ID && isfunc(LATEXT(1))) {
zzmat ch(1D); zzCONSUME;
zzmat ch(3); zzCONSUVE; /* token type 3 refers to "(" */
expr_list();
zzmat ch(4); /* token type 4 refers to ")" */
fn_call_action
zz CONSUIVE;
} else
error-clause;
}
zzEXI T(zztaspl);
return;
fail: /* standard error-case code */
}

Implementing syntactic predicates is not as simple as implementing semantic predicates,
because of the backtracking involved. For example, therule

stat: (decl aration)? declaration
| expr essi on

would result in the following C code

15/8/1995 18:01 PAGE PROOFS antlr

804 T.J. PARR, R. W. QUONG

voi d stat(void)

{

zzRULE; zzBLOCK(zzt aspl); zzNMakeO;
zzQUESS_BLOCK
zzZQUESS

if (!'zzrv & (LA(1)==FIRST:(declaration))) {

{
zzBLOCK(zzt asp2) ;

zzMakeO;
{

decl aration(); /* syntactic predicate */
zzEXI T(zzt asp2);
}
}
zzGUESS_DONE
decl aration();
} else {
if (zzguessing) zzGUESS_DONE;
if ((LA(1)==FIRSTi(expression))) {
expression();

} else
error-clause;

}
zzEXI T(zztaspl);

return;
fail: /* standard error-case code */

}

where zz GUESS, and zz GUESS_DONE are bookkeeping macros to handle the backtracking.

Before eval uating a syntactic predicate, the state of therun-time stack issaved sothat in case
the predicate fails, al ongj np() can be used to restore the parser to its prior state before it
attempted the predicate. Actionsare not executed during the eval uation of asyntactic predicate
to avoid side effects. If the predicate succeeds, parsing continues at the production predicated
by the syntactic predicate, without executing thel ongj np() .

In thisparticular example, the syntactic predicate“(decl ar at i on) ?” verifiesthat input
will indeed match a decl ar at i on. We have used decl ar at i on to predict itself. Thus
decl ar at i on will bematched twice—once as the syntactic predicate and then again during
the actual parseto perform the actions specifiedin decl ar at i on.

C++ parsers

When generating recursive-descent parsers in C++, ANTLR uses the flexibility of C++
classes in two ways to create modular, reusable code. First, ANTLR will generate parser
classesin which the class member functions, rather than global functions, contain the code (%)
to recognize rules and (i7) to perform semantic actions. Second, ANTLR uses snap-together
classesfor the input, the lexer, and the token buffer.

An ANTLR parser consists of one or more C++ classes, called parser classes. Each parser
class recognizes and translates part (or all) of alanguage. The recursive-descent recognition

15/8/1995 18:01 PAGE PROOFS antlr

ANTLR: A PREDICATED-L L(X) PARSER GENERATOR 805

routines and the semantic actions are member functions of this class. A parser object is an
instantiation (or variable) of the parser class.

To specify the name of the parser class in an ANTLR grammar description, enclose the
appropriate rules and actionsin a C++ class definition, as follows.

class Expr {

<<int i;>>
<<
public:
void print();
>>
e INT ("*" INT)* ;
: /] other grammar rules
}

ANTLR would generate aparser class Expr that looks asfollows. Thetypes TokenType
and ANTLRTokenBuf f er are discussed below.
class Expr : public ANTLRParser {
public:
Expr (ANTLRTokenBuf fer *input);
Expr (ANTLRTokenBuf fer *input, TokenType eof);
void e();
int i;
void print();
privat e:
internal- Expr -specific-data;
b

It is natural to have many separate parser objects. For example, if parsing ANSI C code,
we might have three parser classes for C expressions, C declarations, and C statements.
Parsing multiplelanguagesor partsof languages simply invol vesswitching parsers objects. For
example, if you had aworking C language front-end for a compiler, to evaluate C expressions
in a debugger, just use the parser object for C expressions (and modify the semantic actions
viavirtual functions as described below).

Using parser classes has the standard advantages of C++ classes involving namespaces and
encapsulation of state. Because all routines are class member functions, they belong in the
class namespace and do not clutter the global namespace, reducing (or greatly simplifying)
the problem of name clashes. The programmer can also specify some rulesaspubl i ¢, such
as the start rule, and make the rest of therules pri vat e, clearly indicating which rules are
for general use. Lastly, a parser object encapsulates the various state needed during a parse or
translation.

While the ability to cleanly instantiate and invoke multiple parsers is useful, the main
advantage of parser classesisthat they can be extended in an object-oriented fashion. By using
theinheritanceand virtual functionsmechanisms of C++, aparser class can be used asthe base
class (superclass) for avariety of similar but non-identical uses. Derived parser classeswould
be speciaized for different activities; in many cases, these derived classes need only redefine
tranglation actions, as they inherit the grammar rules, as these recursive-descent routines are
member functions, from the base class.

15/8/1995 18:01 PAGE PROOFS antlr

806 T.J. PARR, R. W. QUONG

Asan example, assume that we have constructed an ANTLR specification for the front-end
of aunified ANSI C/C++ compiler and that we use aparser class St r uct Gl assPar ser to
handle C structs and C++ classes. The semantic actionsaddDef n() and nmenber Def n() ,
which add entries to the symbol table, would be defined as virtual member functions of
Struct C assPar ser.

class Structd assParser {

public:

<<

virtual void addDefn(char *struct_classNane) {
symt ab- >i nsert (struct _cl assNane) ;

}

virtual void nenberDefn(char *memNane) {
symt ab- >i nsert Menm(struct Nane, nemniNane);

>>

S : ("struct"]|"class") name:|1D << addDef n($nane); >> "\{" (nmemdecl)* "\}"

nmemdecl
: << rmenberDefn(.); >>

}

To create a unified C/C++ browser, we specify a second class St r uct Cl assBr owser
derivedfromSt r uct G assPar ser that simply redefinesthe semantic actionsto bebrowser
actions. In our sample code, theroutinedi spl ay() representsthe actionto show astringin
the browser. Asthe recursive-descent recognition routines are member functions of base class
St ruct O assPar ser, they areinherited by the browser class and we need not respecify the
grammar. Astheactionswerevirtua, the browser semantic actionswill be called automatically
when using a browser object.
class Structd assBrowser : public Structd assParser {
public:
Struct d assBrowser (ANTLRTokenBuffer *in) : Structd assParser(in) { }
voi d addDef n(char *cl) {display("struct %;\n", cl); }
voi d nmenber Def n(char *m) {display("nmenber \t%;\n", n); }

b

The second way ANTLR uses C++ classes is to have separate C++ classes for the input
stream, the lexical analyzer (scanner), the token buffer, and the parser. Conceptually, these
classes fit together as shown in Figure 4, and in fact, the ANTLR-generated classes “snap
together” in an identical fashion. To initializethe parser, the programmer simply

1. attachesan input stream object to a DL G-based scanner?,
2. ataches a scanner to atoken buffer object, and
3. atachesthe token buffer to a parser object generated by ANTLR.

§ If the user has constructed their own scanner, they would attach it here.

15/8/1995 18:01 PAGE PROOFS antlr

ANTLR: A PREDICATED-L L(X) PARSER GENERATOR 807

DLA nput St ream
pé DLGLexer % ANTLRTokenBuf f er %ANTLRP&FSGY %t

Figure 4. Overview of the C++ classesused by ANTLR.

Thefollowing codeillustrates, for a parser object Expr , how these classesfit together.
mai n()
{
DLGFi | el nput in(stdin); /1 get an input stream for DLG
DLG.exer scan(& n); [/l connect a scanner to an input stream

ANTLRTokenBuf f er pi pe(&scan); [// connect scanner and parser via pipe
ANTLRToken aToken;

scan. set Token(&Token) ; /1 DLG needs vtbl to access virtual fn
Expr parser (&pi pe); /1 meke a parser connected to the pipe
parser.init(); [/ initialize the parser

parser.e(); /1 begin parsing; e = start synbol

}

ANTLRToken isdefined by the programmer and must beasubclassof ANTLRAbst r act Token.
To start parsing, it issufficient to call the Expr member function associated with the grammar
rule; here, e isthe start symbol.

To ensure compatibility among different input streams, lexers, token buffers, and parsers,
al objects are derived from one of the four common bases classes DLA nput St r eam
DLGLexer , ANTLRTokenBuf f er or ANTLRPar ser . Inparticular, all parsers are derived
from acommon base class ANTLRPar ser .

FUTURE WORK

Our work on ANTLR continues to be heavily influenced by the feedback from the industrial
user community. As such, we are currently developing a prototype graphical user-interface
that displaysgrammars as a set of syntax diagrams. Thisinterfacewill highlight the conflicting
syntax diagram pathsin an invalid grammar construct, simplifying the debugging of agrammar.
Currently, ambiguities are reported via a single line of text which can be somewhat cryptic.
In addition, we plan to add a single-step facility for ANTLR-generated parsers that can
dynamically display the portions of the syntax diagram used in the parse and the parse tree
built so far.

CONCLUSIONS

In this paper, we introduce ANTLR, the parser generator of PCCTS. First and foremost,
ANTLRisapractical, programmer-friendly tool with many convenient features. ANTLR inte-
grates the specification of lexical and syntactic anaysis, supportsextended BNF notation, can
automatically construct abstract syntax trees, reports and recovers from syntax errors automat-
ically, and provides significant semantic flexibility. ANTLR generates fast, compact, readable
recursive-descent parsersin C or C++ which are easy to integrate with other applications.
ANTLR uses a new parsing strategy that makesit possibleto develop natural, easy-to-read
grammars for difficult languages like C++. ANTLR uses pred-L L(k) grammars, which are

15/8/1995 18:01 PAGE PROOFS antlr

808 T.J. PARR, R. W. QUONG

LL(k) grammars for £ > 1 augmented with predicates. Predicates allow arbitrary semantic
and syntactic information to direct the parse. Due to its power and convenience, ANTLR has
over 1000 known users in 37 countries and has become perhaps the second-most popular
parser generator both commercially and academically (with YACC/bison being the |eader).

ANTLR is free, public-domain software. ANTLR and the rest of PCCTS are available
viaanonymousf t p at ever est. ee. umm. edu inthe directory pub/ pcct s or by send-
ing e-mail to pcct s@cn. pur due. edu. Inthepub/ pcct s/ paper s directory, thefile
predi cat es. ps. Z is compressed postscript for the paper 4. The newsgroup for ANTLR
and PCCTSisconp. conpi | ers. t ool s. pcct s. Finaly, this paper describes ANTLR
as of version 1.30.

ACKNOWLEDGEMENTS

Will Cohen and Hank Dietz were coauthors of the original PCCTS as awhole. Gary Funck at
Intrepid Technology, Inc. did extensive testing of ANTLR and provided a constant stream of
excellent suggestions. Tom Moog has written aremarkable set of NOTES. newbi e introduc-
tory notes. Ariel Tamches spent aweek of his Christmas vacation in the wilds of Minnesota
hel ping with the C++ output. Thom Wood and Randy Helzerman both influenced the C++ out-
put. Anthony Green at Visible Decisions, John Hall at Worcester Polytechnic Institute, Devin
Hooker at Ellery Systems, Kenneth D. Weinert at Information Handling Services, Steve Hite,
and Roy Levow at Florida Atlantic University have been faithful betatesters of PCCTS. Scott
Haney at Lawrence Livermore L abs devel oped the Macintosh MPW port. Sumana Srinivasan,
Mike Monegan, and Steve Naroff of NeXT, Inc. provided extensive help in the definition of
the ANTLR C++ output and devel oped the C++ grammar to be provided with PCCTS. Cathy
Tanner proofread several drafts of this paper. Findly, the multitude of PCCTS users have
helped refine ANTLR with their suggestions.

REFERENCES

1. S. C. Johnson, Yacc: Yet Another Compiler-Compiler, Bell Laboratories; Murray Hill, NJ, 1978.

2. T.J.Parr, H.G. Dietz, and W.E. Cohen, ‘PCCTS 1.00: The Purdue Compiler Construction Tool Set’, S GPLAN
Notices, 27, (2), 88-165, (February 1992).

3. Terence Parr, Russell Quong, and Hank Dietz, ‘ The Use of PredicatesIn LL(k) And L R(k) Parser Genera-
tors', Technical Report TREE93-25, Purdue University School of Electrical Engineering, (July 1993).

4. TerenceJ. Parr and Russell W. Quong, ‘ Adding Semantic and Syntactic Predicatesto L L(k)—pred-L L(k)’,
Proceedingsof the International Conferenceon Compiler Construction, Edinburgh, Scotland, April 1994.

5. SumanaSrinivasan, Steve Naroff, and Mike Monegan. Private communicationsat NeXT Computer, Incorpo-
rated, October 1993.

6. Donald Knuth, ‘On the Translation of Languagesfrom Left to Right’, Information and Control, 8, 607—639,
(1965).

7. Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ ReferenceManual, Addison Wesley Publishing
Company, Reading, Massachusetts, 1990.

8. TerenceParr, Will Cohen, and Hank Dietz, ‘ The Purdue Compiler Construction Tool Set: Version 1.10 Release
Notes', Technical Report Preprint No. 93-088, Army High Performance Computing Research Center, (August
1993).

9. P M. Lewis, D. J. Rosenkrantz, and R. E. Stearns, * Attributed Translations', Journal of Computer and System
Sciences, 9, 279-307, (1974).

10. Charles N. Fischer and Richard J. LeBlanc, Crafting a Compiler with C, Benjamin/Cummings Publishing
Company, Redwood City, CA, 1991.

15/8/1995 18:01 PAGE PROOFS antlr

ANTLR: A PREDICATED-L L(X) PARSER GENERATOR 809

APPENDIX: GRAMMATICAL STRUCTURE OF RULES

The following grammar is an ANTLR description of ANTLR’s rule meta-language. Much
of the complete ANTLR grammar, including the lexical rules and semantic actions, has been
removed for clarity, but the full sourceis available at the ftp site mentioned above.

rul e: NONTERM NAL { "!" } { ARGBLKLIN.ORQUT } { "\>" ARGBLK.IN.ORQUT }
{ STRNG } ":"
bl ock ";"
{ ACTION }
(exception_group)=«

bl ock
alt (exception_group)* ("\|" alt (exception_group)x*)x

alt : ({ "\~" } element)«

el enent _I abel

ID":"
el enent
{ element_| abel }
(TERMNAL { ".." TERMNAL } { """ | "t" }
T S B A
| NONTERM NAL { "!" } { ARGBLKLINCRQUT } { "\>" ARGBLK.IN.ORQUT }

)
ACTI ON

SENMANTI C_PREDI CATE
"\(" block "\ { "\ T\ |)
"\{" block "\}"

excepti on_group
"exception" { LABEL.ID } (exception_handler)=
{ "default" ":" ACTION }

excepti on_handl er
"catch" ID ":" { ACTION }

15/8/1995 18:01 PAGE PROOFS antlr

810

T.J. PARR, R. W. QUONG

APPENDIX: SAMPLE PROJECTS

To substantiate our claims of broad usage, we asked the users on the pccts mailing list to
provide synopses of their projects. Here are edited versions of thefirst 18 repliesin the order

they arrived.

Gary Funck, Intrepid Technology Inc.
gary@ntrepid.com

Pascal to AdaTranslator.

Ken Weinert
Information Handling Services
kenw@ hs. com

SGML translation to vendor data format and User language for specifying
data translation from one form to another.

Jim Studt
The Federated Software Group, Inc.

Compiler for FormsInterface Management System (a proposed ISO,ANSI
standard) target for NCSC B1 mandatory access controlled systems.

David Seidel
Innovative Data Concepts Incorporated
71333. 1575@onpuserve. com

We have used ANTLR/DLG to create the parser for the MAKE enginethat
we've written for Symantec for inclusion in the next major release of their
C++ compiler system.

Kerr Hatrick
National Institute for Medical Research
k-hatric@inr.nrc.ac. uk

The production of a protein parser to analyze and categorize protein sec-
ondary structure given a protein family grammar.

Tom Zougas
Mechanical Engineering, U of Toronto
zougas@re. ut oront 0. ca

| am currently using PCCTS as a command language interpreter as a user
interface with an inhouse developed (my PhD) numerical analysis package
(nonlinear finite element analysis).

Boleslaw Ciesielski, Viewlogic Sys., Inc.
bol ek@i ew ogi c. com

An extension languagelinked to all of the company’sproducts (CAE appli-
cations) and used for extending their functionality and UI.

Peter Dahl
University of Minnesota
dahl @e. um. edu

| use the same ANTLR grammar (to parse DLX assembly) for a code
scheduler/Alphacode converter and for a DLX compiled instruction level
simulator. | also use ANTLR for my C front end for my compiler.

Sriram Sankar
Sun Microsystems Labs, Inc.
sriram sankar @un. com

The application, ADLT, is a software testing environment based on easy
to useformal specifications. ANTLR is used to generate three independent
parsersand is used in its wide character mode.

lvan M Kissiov
Cadence Design Systems, Inc.
i van@adence. com

1. Parser for Analog Hardware Description Language (not yet commer-
cialy released). 2. Tranglator from Analog Behavioral Modeling Language
(PROFILE) to Analog Hardware Description Language (not yet released).

Philip A. Wilsey
University of Cincinnati
phil.wilsey@ic. edu

VHDL parser, code reorganizer, and code generation. Rewriting and back-
end codegeneration for semantic modeling project supported by ARPA and
Air Force. LL(2) grammar.

Niall Ross
Bell Northern Research
N. F. Ross@nr. co. uk

Our application parses SDL (System Description Language: a specifica-
tion and design language much used in telecoms) output by TeleLOGIC's
SDT tool, and rewrites it as GFIF, the language of the SES'workbench
performance modeling tool, thus allowing models designed in SDT to be
automatically input to SES'workbench for performance analysis.

Steve Robenalt, Scobenalt Engineering
robenal t @r ange. di gex. net

(1) Oberon-2 Compiler for OS/2 under X86 and PowerPC architectures.

Steve Robenalt
Rockwell International
steve@mwl | y.dny. rockwel I . com

1) FORTRAN Translator/Preprocessor (ANTLR, DLG, SORCERER) 2)
Plotting Program Command Interpreter (ANTLR, DLG) 3) Graphics
Database Trandlator (ANTLR, DLG)

Vladimir Bacvanski, Aachen Univ of Tech,
(Germany) viadimr@
i 3.informati k. rwth-aachen. de

A language layer over C++ introducing explicit definition of events and
rules for development of multiparadigm systems (.i.e. a fully integrable
forward chaining expert system using the C++ data model).

Interactive natural language mathematics
muck@udbs. com

James Mansion | use it for describing interest rate derivative deals and for implementing
Westongold Ltd command line parsersand query and manipulationlanguagesin my dealing
j gm@ox. conpul i nk. co. uk support software.

Dana Hoggatt | tell the computer what | want to calculate, and it tells me the answer. No

keyboard. No screen. All done via voice recognition and speech synthesis.
I’'m investigating "verbal" programming techniques, which are radically
different from most of the "visual" programming languages used today.

Glen Gordon, Anderson School Of Mgmt.
ggor don@\GSM UCLA. EDU

Tranglate specially formatted text files into Lotus 123 spreadsheets, formu-
lasand all.

15/8/1995 18:01 PAGE PROOFS antlr

