OBTAINING PRACTICAL VARIANTSOF LL (k) AND LR(k) FORk>1

BY SPLITTING THE ATOMIC k-TUPLE

A Thesis

Submitted to the Faculty

of

Purdue University

by

Terence John Parr

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 1993



ACKNOWLEDGEMENTS

I wish to acknowledge my parents (James and Peggy) and siblings (James Jr., Jacqueline,
and Josephine) throughout my education, without whose support | would never have persevered.
| thank Professor Hank Dietz, my advisor, for his encouragement and tolerance over the past five
years during my Masters and Doctorate.

| thank Professor Russell Quong for his interest in my research and helping me develop
many of the advanced language and parsing ideas in the ANTLR parser generator.

I wish to acknowledge Professors Dave Meyer and Jose Fortes for getting me interested in
electrical engineering and encouraging me to attend graduate school. Professor Leah Jamieson
deserves thanks for taking a chance on me and supporting my continued studies at Purdue.

| thank Professors Matt O’ Keefe and Paul Woodward at the University of Minnesota for
providing me with the fellowship to finish my studies. Further, | wish to thank Paul Woodward
for giving me the work “*ack.”” | acknowledge Kevin Edgar for whom *‘no thanksis too much.”’

To the users of the Purdue Compiler-Construction Tool Set and codevel oper, Will Cohen, |
extend my gratitude for making al of my research worthwhile.



TABLE OF CONTENTS
Page
LIST OF TABLES ...ttt vi
LIST OF FIGURES........cooi ittt bttt e et viii
F N = 1Y I N O LSS Xi
CHAPTER 1 INTRODUGCTION ..ottt anas 1
CHAPTER 2 MOTIVATION ...ttt 4
P20 R = 111 070 o YRS 4
2.2 The Need for kK Terminals of LOOK@NEAA ............ccoerieiririinireeeeesiee e 7
2.2.1 The Effect of Action Placement upon LR (K) and LL (K) .....ccocereveriineneneeeeesesieseee 8
222 LALR AN SLRVEISUSLL ..ottt 15
2.3 Comparison to Previous Work in LL (k) and LR(K) Parsing........c.cccccevivveneeceseceeeesieene, 17
2.4 Optimal Parsing of Deterministic LAaNQUAJES...........ccvvririeeririesiesiesieese s 20
2.4.1 Structure of Parser CompariSOn SEQUENCES........covrererreereerieeeeeesteseeeeeseessesseeeessessenns 21
2.4.20ptimal LL (K) ParSiNg.......cccoiiiiiiieie ettt be s ne s 23
2.4.30ptMaA LR(K) PaISEIS.....c.ceiiiirieieeeisiesiesie ettt 27
CHAPTER 3 PARSING ..ottt ettt 31
3.1 Grammar REPIESENTALION .........eeeeriereeriere et eee e see et ste e eestesee e e e seeseeeseeeessesreeneenseseeens 32
3.2 Heterogeneous Automata in Deterministic ParsSing.........ccccvevvveieeienie s 35
3.3 ParSING DECISIONS.......ciuiiiiieuieiirieste ettt sttt ettt ettt st e et sesb e b e s e e e senbesbe e eneas 40
I I O (14 J 1= o 1= o 2 =T 41
3.3.2 SLL (k) Lookahead CharaCteristiCS.......ccoueiriiiiieiieiisieeeesie ettt s sne s 42

3.3.3When ParserSNEEA LOOKANEAM .......coeeeeeieeeeeee ettt ee e e e e e et e e e s eaneneeeeeeeans 44



Page

3.3.4 How Parsers Use LOOKANEAA ..........cccviieieriii ettt 46
CHAPTER 4 PARSER LOOKAHEAD ..ottt 49
R S 015 1= 1 o 50
L @] = - (0] 1S 53
4.2.1 Full LOOKahead OPErationsS...........ccoerieieirierienieisesie et 53
4.2.2 Linear, Approximate, Lookahead Operations.............ccecerereereeneneeneneseesee e see e 56
4.2.3 Lookahead Computation CYCIES........cooueiieiiiececese ettt 59
4.2.3.1 EXample FIRST CYCle....ouiiiiiireiieeee et 60
4.2.3.2 EXample FOLLOW| CYCl@ ...t 62

4.3 Complexity of Lookahead Information Computation ............cccccceeeeceneseeceenese e 63
CHAPTER 5 SLLY(k)— A LINEAR APPROXIMATION TO SLL (K) cvovveeereceereeeeeceeneeeieneas 67
5.1 SLLL(K) DECISIONS w..evveveoceeceeeeeceeseee s tesessssesesssssses s s s ssss s sses s ssssssn s ssns s sssssassansens 67
5.1.1 EXample SLLL(K) GramMar...........c.ccucvveeeeeeeeeesieseesiessssseessessesssssssssssssssssssssssssssssssnens 68
5.1.2 Empirical Studies of SLLL(K) VErsUS SLL (K) ..o eeesee s, 71
5.1.3 Recognition Strength Versus Space REQUIFEMENES.........c.cooererinenenesiesese e 75
oIS T I (g T =0 11107 1 11/ 79
5.2 SLL2(K) LOOKEhEA COMPULELION ...t eeneenes 82
5.2.1 Example Lookahead COMPULELION..........coerreeeieirinie et 83
5.2.2 Algorithms to Compute SLL (k) LOOKSNEAA ............ccecueeeeceeeeeeeeeeeeeeeeeee e 85
5.3 Testing fOr the SLLL(K) PrOPEIY ........oveveeeeeeeeeeeeee e see s eeeseesseseesee s ssesne e s s enesnesneenes a1
5.4 SLLL(K) Parser CONSIIUCHON. .........vveeveeeeceesssssessesssesssessessessssssssessssssssssssssssssssssssssssensssens 94
CHAPTER 6 SLL (K) ettt 99
6.1 EXaMpPle SLL (K) GFaMIME .......ccceiirieiiee e eeeeiesieseeeee e sie e ee st sseeeesaeseeeseeneessesseeneensesneens 99
6.2 SLL (k) Lookahead COMPULBLION ........c.ccciiieieeiececeeee sttt ste sttt ere et e e e ens 102
6.2.1 Example Lookahead COMPULELION...........coerieeeieeresesiesie s 102
6.2.2 Straightforward LOOK AlgOrithm ..........oooiiei e 104
6.2.3 Constrained LOOK ) AlQOrithm .........cceeiiiiiicece et e 105
6.2.4 LOOK Algorithm With CaChing .........ccoeieeiniiineesese s 106
6.3 Testing for the SLL (K) ProPertY .....oo.eoeee et 113
6.3.1 Characteristics of SLL (K) DEtErMINiSM........c.ccviieiiiiiiesie e 114
6.3.2 Algorithm for Testing for the SLL (K) Property ........ccoeoenineneineneseseseseseesieeas 116
6.3.3 Complexity of Testing for the SLL (K) Property ........cccccceoeeereneineneneseseeesesneseeas 119

6.4 SLL (K) Parser CONSITUCLION ......ccccuiiieiieie ettt ee et ae st et sresre et e sne st ens 120



Page

6.4.1 Lookahead INformation COMPrESSION.........ccererieererieriesieeeesee e seee e 120
6.4.2 Implementation of Heterogeneous DeCiSioN SEateS.........cccovveeerereeeeneneseee e 125
6.4.3 Example SLL (k) Parser CONSITUCLIONS ........cceecveiieiiececcie ettt 129
CHAPTER 7 LALL (k), LL (K), SLR(K), LALR(K), AND LR(K).....cctrtruererieerieenieeneeereeeneeiens 134
A () SO 134
7.2 L (K) ettt ettt e e R e b e h ettt b e 140
7.3 SLR(K) ettt b s 142
A I Y (1 TSSO 146
7.5 LIR(K) ettt bbbt R bbbt b et n e e b e b 149
7.6 LL™(K) @O LR™(K). e cveveveeireieeeisesiseieeeisesssessesssesssessss s sesssssessssesssssesessssssssesessssssssssessnnnes 151
CHAPTER 8 CONGCLUSION.......oittiiitiirieesieesie et sne e 155
LIST OF REFERENCES.........ocioiiiiiriiinieie ettt sttt e b et se e n e e s 158
APPENDIX .ttt b et E b e R e b e Rt h e bt e b e b e e 161



vi

LIST OF TABLES
Table Page
2.1 Partial Parsing TaDI.........ceiiiiieieee e 11
2.2 Timeto Create | T |" Lookahead Permutations (| T |=100).......ccccceevrererereeeresrereieeerisresesennnns 20
3.1 Lookahead Requirements for 22 Sample Grammars...........c.ccceeveuccicveeeeeereese e esesenns 43
3.2 Average Lookahead Requirements for 22 Sample Grammars..........coevrrneneneeneesneeeens 43
3.3LL(3) induces Relation for State A Of FIQUre 3.11.......coooiieieeese e 46
3.4 Example C(2) iNdUCES REIALION .......cceiiee et 47
3.5 LLY(2) INAUCES REIGON. ......oooveeececveeeeeee ettt s s annens 48
5.1 SLL (2) induces Relation for Grammar G5.L...........cccceiiiieieeiine e s 69
5.2 LL1(2) induces Relation fOr Grammar G5.L..........cwueeeeeeieeeeeeeeseeeeeeeseeseseeseeseeseseseessnenean. 70
5.3 Deterministic Lookahead Requirements By Decision Type for 22 Sample Grammars............. 72
5.4 Number Nondeterministic Lookahead Decisions By Type for 22 Sample Grammars............... 74
5.5 Total Number Nondeterministic Lookahead Decisions By Type for 22 Sample Grammars.....75
5.6 Example SLL (2) iNAUCES REIGLION .......couiiiiieieieiisiesieieee et 76
5.7 Example SLL1(2) iNAUCES REGHON ... seessessessesne e eness s 77
5.8 SLL1(1) Relation induces for Grammar G5.3..........cueeeeeeeeereeeeeeeseseeeeseeseeseseeseeseesseseessneneans 84
5.9 S.L1(2) induces Relation for Grammar G5.3 @ K=2 .........c.ovueveererereeeseeesseseeeseseesseesesessnens 84
5.10 Example SLLL(3) iNAUCES REIHON ...........veeeeeeeeeeeeeseseese s eee s sne e snees s 95
5.11 Sample Bit Set Implementation— SEtWA ATTaY.......cccciiveieeieereee e 97
6.1 9L (3) induces Relation for Nonterminal D in Grammar GB.1 ..........cccceevverereieienenenienens 100
6.2 SLL%(3) induces Relation for Nonterminal D in Grammar GB.1...........oc.ocevveveeveereeseereernenns 100
6.3 Generic SLL (k) induces Relation for Nonterminal A .........cocoeeoievieeiieece e 121
6.4 Generic SLL (k) induces Relation for Nontermingl A............c.cooevueeveeeeereeeeseeenseereessenseensens. 121
6.5 Implementation Strategies for mrary Lookahead DECISIONS.........ccccccveveieneeceseseceese e 126

6.6 Implementation Strategies for Non-mrary Lookahead DeCiSiONS...........ccccvvceevieevecneenensennns 128



Vii

Table Page
6.7 SLL1(2) induces Relation for Nonterminal Ain Grammar GB.3..........o..oveeeveereereereereseesnenn. 129
6.8 SLL (2) induces Relation for Nonterminal Ain Grammar G6.4..........ccccoeveveeceneneeeeneenene 131
6.9 SLL%(2) induces Relation for Nonterminal Ain Grammar GB.4.............oceueveeveeveeseeseeseennenn. 132
7.1 SLL (2) induces Relation for Nonterminal Ain Grammar G7.1..........ccccceveveeveiececeeseennn, 136
7.2 LALL (2) induces Relation for Nonterminal Ain Grammar G7.1........ccoceveeieivneneeseieenens 136
7.3 LALL (2) induces Relation for Nonterminal B in Grammar G7.2.........cccccvoerereneienienienienns 141
7.4 LL (2) induces Relation for Nonterminal B in Grammar G7.2..........cccceevvveeeevenececeesneenen, 141
7.5 SLR(2) induces Relation for Partial SLR(2) Machine For Grammar G7.3..........ccccceeevennee. 144
7.6 .RY(2) induces Relation for Partial S_R(2) Machine For Grammar G7.3.........cc.cccceuun... 145
7.7 LALR(2) induces Relation for Partial LALR(2) Machine For Grammar G7.3...........c.......... 147
7.8 LALR(2) induces Relation for Partial LALR(2) Machine For Grammar G7.3..................... 148
7.9 C(3) INAUCES REIGLIION ...ttt sn e 152
7.20 CL(B) INAUCES REIBLON. ...t sn e ee e 152
7.11 C?(3) INAUCES REHON. ......cvoveeeeeeeee et es s en e ss s 153

7.12 C1(3) induces Relation for CZ(3) INfOrMEtioN .......c..veecveeveceereereenseseeeesessseeeesssseessesseessens, 153



viii

LIST OF FIGURES
Figure Page
2.1 Partial LR(K) MBCHINE .....vveeveeeeeeeeeeeeeeeeeeeeeseseeseseees s sesseseseesssesesesesseseseesseses s sesseessesessenesesesnes 10
2.2 Comparison of LL (k) Determinism Methods..........cccoeveeiieeiiee s 20
2.3 Conventional Parsing fOr K=3 ... s 22
2.4 0ptimal ParSiNG fOr K=3.....c.oo ettt st st sa e reens 22
2.5 Near-Optimal Parsing where k-tuple ISNOt ATOMIC........ccoeieeiiernin e 22
2.6 LL (2) Machine for Grammar G2.6..........cooerieeeirienieieeiesie et 24
2.7 Partia Optimal LL (2) Machine for Grammar G2.6 ..........cccceeeeveieiecieese e see e 25
2.8 Generic LR(K) Parser DECISION SEALE......ccveieeiieiie et eseeste s st e e see e e e e see e 27
2.9 Partial LR(2) Machinefor Grammar G2.13 ..........ccccereirinirieneeeeesiesie e 28
2.10 Partial Optimal LR (2) Machine for Grammar G2.13.........cccccceeviivecieene e 29
3.1 GLA Construction from CFG ..o s 33
.2 GLA TOF GramMIMAEN 3.1 ...ttt et b et b et e e b e 34
3.3 ldealized GLA versus Implementation GLA ..ot 35
3.4 $K-BUGMENLALION OF GLA’S ... eeeeeeeee e seeee s eee e seees e seseeeseeseeeseeeees e eeeeeseseseneas 35
3.5 Heterogeneous AUtOMELON TEMPIALE ........c.ovveieirieieeee s 36
3.6 LL (2)-machine for Grammar 3.2.........cccceiiiiiieeie e e e ste sttt s re e sae e ens 37
3.7 Heterogeneous Automaton States Sa, Sg, @A St ovveveecee v e 38
3.8 Compression of States for NONtermMinal C.........cooeiiieiriniriereeee s 38
3.9 Partial LR(2)-machine for Grammar 3.3 .........ccceoeieiieiese e ee e 39
3.10 Heterogeneous Automaton States Sp, Sq, aNd So.eeeveeierviee v e 40
311 LL (3)-Machine for Grammar G3.4.........coeiueeeirierieieieiesie e 44
3.12 LR(D)-Machine for Grammar G3.4.........ccecueeeieceeiese e eee et sae ettt s ne s 45

3.13 Example induces RE@ion PlOt ..........coe e 47



Figure Page
4.1 Child-Sibling Tree Representation of K-tuple Set..........coeiviiiieve e 52
4.2 Tree and DFA Duality Example for {(a,b,C),(8,d,€)} ..cceererieee e 53
4.3 9L (K) LOOK OperationS 0N GLA .......ccoieiiirierieieieiesie ettt 55
4.4 LK) LOOKE OPErations 0N GLA ..........oveeeeeieeeeeeeseseeeseee e e ssesseseesse s s s eene s s sneenenns 58
4.5 Grammar With FIRST | CYCI@......o oottt 61
4.6 Partial Computation Dependence Graph for Grammar G4.2..........cceocvveveeceneseseesese e 61
4.7 Partial Computation Dependence Graph for Grammar G4.3...........ccccceveeeevevesieceece e 63
4.8 LOOK COMPULELION PLANES........eeeeieeiteeiee ettt see e seesee e e neesaesneeneeneesneens 64
4.9 Number of LOOK{ Invocations for Grammar G4.7 (N0 CaChING) ......vvereeverereeereerieesesseennens. 65
5.1 Lookahead Vector PIot for Grammar G5.1.........cccoiviiriiirineinicenieeseee e 69
5.2 Automaton for iNdUCESIN TaIE 5. 1.........ooiiieieee s 70
5.3 Automaton for iNdUCESIN TaDIE 5. 1......ccoiieieiiereees s 71
5.4 DFA’sfor Example Lookahead TUuple SPaCe.........ccecueeeeveiieceeese et 76
5.5 Example Lookahead VEeCtor PIOt ...........cooiiiiieeceeeee e 77
5.6 State for EXampPle iNAUCES..........cooiiiiiriiecesese e 78
5.7 Lookahead Vector Plot With ArtifiCial VECIOIS........ccoueiriiiiiirieisesces et 78
5.8 GENEriC SLLL(K) DECISION SEALE ......o.cveeeeceeeeecee et ssesses s 79
5.9 Optimized SLLL(K) iNAUCES SEALE .........vvoevereceeeeeeeee et sessses s ses s ssss e 82
5.10 Example GLA for LOOK COMPULALIONS .......cceiueiieirieiesiesiecteeieste e eeessessesseeseessesneseeseeseesns 83
5.11 Heterogeneous Automaton for Node A of Grammar G5.3 ........ccccoveeierineniere e 84
5.12 Inefficient Strong LOOKE AIGOMthM 0N GLA ........coovueveeeeeeeeeeeeeesesesseesseeseesssssessessss e 85
5.13 Efficient Strong LOOKE AIGONthm 0N GLA ..o ee e eeeee e 88
5.14 Cache Retrieval for Efficient Strong LOOKE .......o.eveveevereeereseeeeeseessessesesssesssssessssssssesssessssens 89
5.15 Cache Storage for Efficient Strong LOOKE ........ccucveeeeceeeeeeeeessseeesesesseessesseesssssesssesssssssens 20
5.16 Algorithm on GLA to Test SLLL(K) DEterMiniSm .........c..veeveeeeeeereeeeeseseeseesseseeeeeeseeses s 92
5.17 SLL (k) Nonterminal DeCiSion TEMPIALE...........c.evevreereeneiesesessessesessessessesssesssssenssseanes 94
5.18 SLLL(3) IMPIEMENLALION OF A.......ooveeeeeeeeeeee et sesss s aenneas 96
5.19 Optimization of A'SIMPIEMENLALION ......cc.ecviiieie e 97
6.1 Conventional State for Nonterminal D in Grammar GB.1...........ccocuviiereeienieneneneeneneneens 101
6.2 Hybrid State for Nonterminal D in Grammar GB.1...........cccovereieririeneneeienese e 101

6.3 Example GLA for LOOK COMPULALIONS ........cccueiiiiieeieeiiesiesieeeesiesteeeeseestesseessesresresssessesresnens 103



Figure Page
6.4 Straightforward SLL (k) LOOK, Algorithm 0N GLA ... 104
6.5 Constrained SLL (k) LOOK Algorithm 0N GLA ........cooiiieeeeeseeee e 106
6.6 LOOK Algorithm on GLA With CaChing..........ccoiererieirininieeeeese et 108
6.7 Cache Retrieval for Efficient SLL (K) LOOK| ....coviiiiiieieii et 110
6.8 Cache Storage for Efficient SLL (K) LOOK( ...cceeirieeeieeerieseeeenie s eeesee e e e seeeneesee e seeas 112
6.9 Average Number of LOOK Operations per Decision for SLL (n) Determinism..........c.ccce..... 114
6.10 Average Analysis Time for SLL(n), SLL (n), and LALL (n) Determinism............c.oe....... 115
6.11 Algorithm on GLA to Test SLL (K) DeterminiSm.........coocoveeeerenieeeese e 117
6.12 Algorithm on GLA to Test for SLL (K) DEterminiSM .........ccceeveerireneneeienesesieseeese e 118
6.13 Hybrid State for Nonterminal with TWo Productions............ccccvvveeeieieseece e 122
6.14 Purely SLL (k) State for Nonterminal with Two Productions.............ccoeeeerenerecineneniennns 123
6.15 Algorithm on Grammar to Construct SLL (K) DeCiSion SLAES..........cccorveerererieneeinesesieneas 124
6.16 Hybrid SLL (k) State for Nonterminal A of Grammar GB6.3...........ccccceevevieneene s 130
6.17 SLL (2) Implementation of Afor Grammar 6.3...........ccooiieeiereneeeene e 130
6.18 Alternate SLL (2) Implementation of A for Grammar 6.3..........ccocvereneieneneneneesesesieens 131
6.19 Hybrid State for Nonterminal Ain Grammar GB6.4............cccceeverieieeieeseseeeese e seereese e 132
6.20 Hybrid SLL1(2)/SLL (2) Implementation of A for Grammar 6.4..............ccceeeeeeeererereneennnne. 132
7.1 LALL (K) LOOKj AlQOrithm ON GLA .......ooiiieeireseeeeese ettt 138
7.2LL (2) Implementation Of Bin GrammMar 7.2 .........ccceceeieieieeieesie s eeeseeste e e sre e sse e eneas 142
7.3 Partial SLR(2) Machine for Grammar G7.3 ........ccooeeierereeeeeenie s eeesee e e e seeesee e seesneas 143
7.4 Heterogeneous Automaton State for State Sy Of 7.3 ..o 145
7.5 Partial LALR(2) Machine for Grammar G7.3..........cccveieiiieiieie e sne e 147
7.6 Heterogeneous Automaton State for State Sy Of 7.5 ... 148

7.7 Partial LR(2) Machine for Grammar G7.3 ... 150



Xi

ABSTRACT

Parr, Terence John. Ph.D., Purdue University, August 1993. Obtaining Practical Variants of
LL (k) and LR(k) for k>1 by Splitting the Atomic k-Tuple. Major Professor: Henry G. Dietz.

LL (k) and LR(K) parsers for k>1 are well understood in theory, but little work has been done in
practice to implement them. This fact arises primarily because traditional lookahead information
for LL (k) and LR (k) parsers and their variants is exponentialy large in k. Fortunately, this worst
case behavior can usually be averted and practical deterministic parsers for k>1 may be con-
structed.

This thesis presents new methods for computing and employing lookahead information. Previ-
ously, the lookahead depth, k, was generally fixed and the lookahead information was represented
as sets of k-tuples. We demonstrate that by modulating the lookahead depth and by splitting the
atomic k-tuple into its constituent components, individual terminals, the lookahead information
Size can be dramatically reduced in practice. We define a linear approximation to conventional
lookahead for LL (k) and LR(k) and their variants that reduces space requirements from an
exponentia function of k to a linear function. Moreover, this approximation results in deter-
ministic parsing decisions for the majority of cases. By compressing lookahead information to
near linear space complexity, we show that deterministic parsing for k>1 is practical.



CHAPTER 1 INTRODUCTION

Most computer programs accept phrases from an input language and generate phrasesin an
output language. These input languages are frequently complicated and their recognizers can
represent a considerable programming effort; e.g. programming languages, database interfaces,
operating system shells, text processors and even games. Language tools such as parser genera-
tors are generally used to construct parsers for these languages. There are a variety of parsing
strategies commonly in use, each with different recognition abilities, but all strategies can benefit
from large amounts of lookahead — the window into the input stream of symbols, called termi-
nals, that a parser examines to make parsing decisions. This thesis is concerned with extending
the recognition strength of automatically generated recognizers by empowering them with more
than asingle terminal of lookahead.

Parsers typically employ a lookahead depth, k, of a single terminal because using deeper
lookahead was previously considered intractable — the complexity of grammar analysis and the
space complexity of the resulting parsers are exponential in the worst case. Fortunately, the
worst case is extremely rare and many deterministic parsing strategies may practically employ
lookahead depths of k>1.

Deterministic parsers that use more than a single terminal of lookahead, LL (k) and LR(k),
have two sources of exponential behavior: the number of parser states is exponentia in the size of
the grammar and the lookahead information is exponential in k. The number of parser states can
be reduced to a polynomial function of the grammar size by employing any of the weaker LL (k)
or LR(K) variants, e.g. SLL (k) [RoS70], LALL (k) [SiS82,SiS90], SLR(k) [DeR69, DeR71], or
LALR (k) [DeR69], while still maintaining reasonable recognition strength. Conventional looka
head information, on the other hand, is inherently exponential in nature as it must be able to
represent all possible vocabulary-symbol permutations of length k.

To facilitate practical parsers for k>1, we must change the way lookahead symbols are
employed. Previoudly, at each change of parser state, parsers examined the next k terminals of
input regardless of whether all k terminals were needed and whether |ookahead was needed at all.
As aresult, each input symbol was inspected exactly k times. The fact that decisions rarely need
all k symbols leads us to the concept that a new type of parser, called an optimal parser, could be
constructed that inspected each input symbol at most once. Further, if each symbol is to be
examined at most once, the conventional lookahead atomic unit, the k-tuple, must be dissolved
into its constituent components— the individual terminals themselves. By varying the



lookahead depth and by allowing non-k-tuple lookahead comparisons, we have removed the two
implicit assumptions that led most researchersto consider parsing, for k>1, impractical.

Our approach to parser construction is based upon new data structures, algorithms, and
parser lookahead-decision implementations. We begin by constructing a representation of the
grammar, called a grammar |ookahead automaton (GLA), that represents the collection of all pos-
sible lookahead languages for all grammar positions. The lookahead sequences of depth k for a
position in the grammar correspond to some subset of the sequences of non-¢ edges along the
walks of length k starting from the associated GLA state. The edges found along the walks can
be recorded as deterministic finite automata (DFA’s), which we store as child-sibling trees. Con-
sequently, all lookahead computations for any LL (k) or LR(K) variant can be elegantly described
as constrained automaton traversals.

Straightforward algorithms for lookahead computation have time and space complexities
that are, unfortunately, exponential functions of k. We circumvent this intractability in three gen-
eral ways. First, the lookahead depth, k, is modulated according to the actua requirements of the
parser decision. Second, an approximation to full lookahead, with potentially linear time and
linear space complexity, is used in place of the normal lookahead computation before attempting
conventional lookahead computations; these results even can be used to reduce the time to com-
pute full conventional lookahead sets. Third, the results of lookahead computations are cached in
order to avoid redundant computations. These approximations, denoted LL(k) and LR(k),
represent a significant departure from the normal view of lookahead computation and parser deci-
sion construction. Previously, lookahead was stored as sets of atomic k-tuples whereas we con-
sider aterminal to be atomic; e.g., the approximate lookahead computation is a form of compres-
sion that yields k sets of terminals rather than O (| T |¥) k-tuples where |T | is the size of the ter-
minal vocabulary. Approximate lookahead has two direct benefits: The computation of the k sets
is of polynomia complexity (and potentially linear) in k and the lookahead decisions in the
resulting parsers have sizeslinear in k.

Although the various LL (k)- and LR (k)-based parsers need lookahead of different depths
for different grammars and grammar positions, parsing decisions themselves are simple mappings
from a domain of terminals or terminal sequences to a range of parser actions; hence, parser loo-
kahead decisions are identical in nature regardless of the parsing strategy. We abstract the notion
of alookahead decision to a relation called induces that describes this mapping; as a result, any
transformation or implementation of an induces relation is equally valid for any parsing strategy.
The induces relation also isolates the computation of lookahead from the induction of parser
actions and the type of action. Testing for parser determinism is accomplished by ensuring that
theinducesrelationsin all parser states are deterministic.

While LL (k) and LR(K) parser construction is well understood from a theoretical stand-
point, little practical work has been done because the implementation of lookahead decisions was
previousy considered intractable. We concentrate, therefore, on the implementation of parser
lookahead states. While the worst-case parser decision size is proportional to the worst-case size



of the lookahead information, O (| T |¥), in general, much can be done to reduce this to a practical
size. As with lookahead computations themselves, we apply a hierarchical scheme: Firgt, the
lookahead depth, k, is modulated to use minimum lookahead; most lookahead states can be
resolved with only a single terminal of lookahead (k=1), which yields a parser whose lookahead
information is mostly linear in size. Second, the linear approximation is attempted before full k-
tuple lookahead; in the event that k>1 lookahead is required, it is generaly sufficient to look at
the terminals visible at particular lookahead depths rather than k-sequences of terminals. Finally,
when the linear approximation is insufficient, a hybrid decision composed of the linear approxi-
mation plus a few k-tuple comparisons is used. By constructing parsers that can dynamically
switch between different lookahead depths and comparison structures, parsers with large looka-
head buffers become practical. We describe these parsers, which have different state types, as
heterogeneous parsers.

Because LL (k) and LR (k) languages cannot be recognized with parsers of polynomial size
[HuS78], we choose to demonstrate our approach using a variant that has size proportional to the
grammar size. We shall emphasize the LL (k) variant SLL (k) in this thesis because LL (k) gram-
mars may be transformed into structuraly equivalent SLL (k) grammars [RoS70] and S_L (k)
clearly illustrates the important issues in our approach to parser construction — grammar
representation, lookahead information representation, lookahead computation, lookahead deci-
sion determinism, and lookahead decision implementation. LALL (k), LL (k), SLR(k), LALR(k)
and LR(k) parsersare, however, discussed in Chapter 7.

This thesisis organized as follows: Chapter 2 provides motivation for the use of more than
asingle termina of lookahead in deterministic LL (k) and LR (k) parsing, outlines previous work
in the areaof LL (k) and LR (k) parsing, and introduces optimal parsing, which motivated our dis-
solution of the atomic k-tuple. Chapter 3 details our approach to parser representation and
Chapter 4 details our new perspective on lookahead information, lookahead computations, and
grammar analysis. Using the methodology in Chapters 3 and 4, Chapter 5 provides a complete
description of SLLY(k) parsers including linear grammar analysis and parser construction.
Chapter 6 is similar in form to the format of Chapter 5, but describes SLL (k) completely. The
SLLY(K) linear analysis of Chapter 5 is used to reduce grammar analysis time and to reduce the
size of SLL (k) parsers. Chapter 7 completes the thesis by describing the other LL (k) and LR (k)
variants. In addition, Chapter 7 generalizes LL (k) and LR*(k) to LL™(k) and LR™(k).



CHAPTER 2 MOTIVATION

Almost al theoretical work regarding LL (k) [LeS68] and LR (k) [Knu65] parsers has cen-
tered around using more than a single terminal of lookahead (k>1) while aimost all practical
work assumes that a single terminal of lookahead is employed. This is primarily because com-
puting lookahead information needed to make parsing decisions is much more difficult for k>1
and the resulting information is exponentialy large in the worst case. Nonetheless, we maintain
that k>1 terminals of lookahead are very useful; future chapters provide a mechanism by which
parsers that employ alookahead depth greater than one can be practically implemented.

This chapter defines the notation used throughout this thesis, provides motivation for the
use of large amounts of lookahead, describes what others have done with regards to LL (k) and
LR(k) parsing, and presents a utopian view of parsing, called optimal parsing; while trying to
reduce the number of lookahead inspections, optimal parsing inspires our view that the k termi-
nals of available lookahead can be examined individually rather than in an atomic k-tuple.

2.1 Terminology

In general, we use the notational conventions of [ASU86] and [SiS88, SiS90] in this thesis
for discussing parsing theory.

The input to a parser consists of a sequence of symbols, which are merely words from a
vocabulary, T. A string of symbols is a finite, ordered sequence of symbols; the empty string is
denoted e. The set of all strings that may be constructed from a vocabulary, therefore, is T", the
closure of T. T*, the set of nonempty strings constructed from T, is T" - ¢, the positive closure
of T. A symbol or set of symbols may be raised to an exponent, n, which implies that n of the
symbol or symbol are required; e.g. T2 indicates a sequence of 3 symbols from set T and a® indi-
catesaaaaa. The prefix of astring, w =a;...a,, is

Kow = w [w | <k
W= ar.a (wisk



where |w | isthe length (number of symbols) of w.

The structure of an input language is described with a context-free grammar (CFG) or
grammar for short as only context-free languages (CFL’s) are discussed in thisthesis. A CFG is
afour-tuple G = (N, T,P,S) where

N isthefinite set of nonterminal symbols
T isthefinite set of terminal symbols (input language vocabulary)
PONX(N[]T)" isthefiniteset of productions of theform A — a wherea O (N [] T)
SON isthe start symbol

where we augment all T with **$"’", the end-of-file marker. Define an item to be a position in the
grammar denoted [A — o ] for some a, O (N [] T)". We further define the Ieft edge of a
production to be an item of the form [A - ea]; the brackets will be left off when it is obvious
that an item is being discussed. The grammar vocabulary isV =N [ ] T, whereas the vocabulary
of theinput language is T. A ruleis anonterminal plus a collection of one or more of its produc-
tions.

The size of an object isdenoted |...|. For example, the size of agrammar |G | is

IGl= 2 |Aa]
A-aOP

which is the number of distinct positions within the right hand sides of al productions; similarly,
[T], IN|,and |P | arethe number of terminals, nonterminals and productions, respectively.

Unless otherwise specified, the lower-case Greek letters, a, B, ...,  represent strings of
grammar symbols. The lower-case Latin letters u, v, ..., Z represent strings of terminals while
most lower-case letters appearing earlier in the alphabet are single terminas; the letters i —q
represent action numbers, integers or automaton states. Upper-case Latin letters generally
represent nonterminals. Define the derivation relations O, O “and 07 as ‘“di rectly derives,”’
‘“*derivesin zero or more steps,”’ and ‘‘derivesin one or more steps’ where each relation may be
annotated with Imfor aleftmost or rmfor arightmost derivation; i.e.

UAB O uaB  leftmost derivation
BAu O, Bau  rightmost derivation

witha,BOV,u0T andA - a OP.

The language generated by a grammar, L (G), isthe set of all strings derivable from the start
symbol; i.e. L(G)={uOT |SO*u}. Ingeneral, when SO~ a, o is caled a sentential
formof G; if a O T", such as u above, a is called a sentence of G. A left (right) sentential form
is a sentential form resulting from a leftmost (rightmost) derivation. Unless specified otherwise,
the start symbol is alwaysthat of the first production given.



FIRST,(a) is the set of al strings, less than or equal to k in length, that can begin any sen-
tence derived froma O T

FIRST () ={ k:w |a 0" wwherew OT",a OV}

If a derives the empty string (€) then FIRST| is not € as many propose and if a is itself € then
FIRST is the empty set, (1. Occasiondly, € is used as an imaginary placeholder terminal for
implementation’ s sake, but should not be aresult of a FIRST, operation.

The computation FOLLOW(A), for some A O N, is the set of all strings which can be
matched immediately following the application of A in any valid derivation; i.e.

FOLLOW(A) ={ FIRST(B) | SO * aAB}

forsomea 0T ,BOV forLL(k)anda OV",BOT" for LR(K).

LL (k) [LeS68] and LR (k) [Knu65] parsers recognize LL (k) and LR (k) languages described
by LL (k) and LR(k) grammars, respectively. An LL (k) grammar is one for which each nonter-
minal, A, satisfiesthe LL (k) condition:

FIRST, (03) A FIRSTy(023) = O

for al left sentential forms uAd and distinct productions A - a;, and A - a5 in P. A Strong
LL (k) (SLL (k)) grammar [RoS70] is defined similarly:

FIRST (0, FOLLOW(A)) A FIRSTy (0, FOLLOW(A)) = O

A grammar is LR(K) if its canonical LR(k) parser is deterministic. Equivalently, [SiS90] states
that the conditions

SO d;A1y; O d1my1=vy1
SO Ay, O 0ty =VXy)

aways imply that 8; =0y, A1 =A,, and w; =wy. A Simple LR(k) (SLR(k)) [DeR71] grammar
is one for which the SLR (k) parser is deterministic. [SiS90] states that an SLR (k) parser is deter-
ministic if for al states g, the following hold:



(1) Whenever q contains a pair of distinct items

[Al - (A)l.], [A2 Ed (A)Z.],then
FOLLOW, (A1) A FOLLOW(A) =0

(20 Whenever g contains a par of items
[A; - aeaf],[B - we], whereaisaterminal,
then
FIRST(aBFOLLOW(A)) n FOLLOW(B) =0

We shall refer to any state that examines lookahead within a parser as a parser decision
state. Also, the k terminal symbols in a deterministic parser’s lookahead buffer are referred to as
T4, .., Tx. The reader is assumed to be generally familiar with the actual construction of *‘top-
down’’ (LL (k)) and ‘‘bottom-up’’ (LR(K)) parsers; see [SIS90] or [ASU86] for detailed discus-
sions.

In [SiS90], the authors use the notation C (k) to refer genericaly to LL (k), LR(K) and their
variants. We will use this notation as well when referring to generic deterministic parsers.

2.2 The Need for k Terminals of Lookahead

Consider modifying a compiler whose recognizer was built using a parser generator. A
change of target machine could involve changing semantic actions within the grammar and prob-
ably the placement of some of these actions. Because recognition and trandation are logically
separate phases, one phase should not interfere with the behavior of the other. For a semantic
modification to break the recognizer is unacceptable, but this is precisely what can occur with an
LR-based parser generator because productions must be ‘‘cracked’’ to create reductions
corresponding to the action positions. Placing an action within an LR grammar implies rule
cracking, thus, we use both notations interchangeably in this section. Placing actions within an
LALR(1) [DeR71] parser generator, such as YACC [Joh78], can be a terribly irritating experi-
ence, but has become acceptable due to its apparent unavoidability. This is because the only
commonly available substitute was LL (1). Although LL (1) parsers are not sensitive to action
placement and are more flexible semantically, in practice, LL (1) recognizers are noticeably
weaker LALR(1); LL (1)-conforming grammars are more difficult to construct.

Can sensitivity to action placement be reduced while retaining reasonable recognition
strength? LR parsers will never be insensitive to action placement, but both LL and LR tech-
niques can benefit from k terminals of lookahead. It is well known that LL (k) is stronger than
LL (k-1) [FiL88]. Knuth [Knu65], in contrast, shows that an LR(k) grammar always has an
LR(2) equivalent; unfortunately, transforming LR (k) grammarsto LR (1) is hot easy and, further,
grammars cannot be arbitrarily rewritten when actions may be placed anywhere among the



productions. To demonstrate the effect of action placement, this section shows, among other
things, that LL (k) is strictly stronger than LR (k-1) given that actions can be placed at any posi-
tion in a grammar. We suggest that, regardless of the parsing method, k>1 terminals of looka-
head are useful and that, unfortunately, in the worst-case action placement scenario, LL (k) is the
largest class of languages one can recognize with a context-free grammar after the actions have
been forced to a production right edge.

This section presents a number of theorems regarding the relative recognition strength of
LL, LR, LALR and SLR [DeR69, DeR71] grammars augmented with semantic user-defined
actions. Section 2.2.1 begins by discussing how actions may be embedded within LR productions
and proceeds to prove a theorem which is fundamental to our discussion of expressive strength —
the strength of LR(k) can be reduced to that of LL (k) by an appropriate choice of action place-
ment. In addition, this section shows that, in fact, LR(k) grammars generate a larger class of
languages than LR(k—-1) grammars generate when augmented with actions. Section 2.2.2
explores the relationship between the LR (k)-based classes of languages and the LL (k) class.

2.2.1 The Effect of Action Placement upon LR (k) and LL (k)

In the course of deriving the properties of *‘trandation grammars,”’ Brosgol [Bro74] made a
useful observation about the relationship between LL (k) and LR(k). He showed that a grammar
is LL (k) iff that grammar, augmented on each left edge with a reference to a unique &-
nonterminal, is LR(k). Because insertion of an action at the left edge of a production implies
cracking to introduce such a reference, Brosgol’s work can be seen as proving that, in the worst-
case action placement, LR (k) is equivalent to LL (k).

In this section, we examine the more general properties of different parsing methods and
lookahead depths relative to placement of actions. We show that LL (k) is insensitive to action
placement, LR(k) cannot generally be rewritten as LR(k—1) (when actions may be arbitrarily
inserted), and finally that LL (k) is stronger than any deterministic parsing method with less loo-
kahead because of the deleterious effect of arbitrary action-placement upon LR's recognition
strength. We begin by defining how an LR grammar can be augmented with arbitrarily-placed
actions.

Definition: Rule cracking is the process by which semantic actions may be embedded within LR
productions. Productions of the foom A - a @B are trandated into A - A®D B and
AL _, a @ where AY) is unique and a, B0 V"; @ represents a unique semantic action; T is
the set of terminals and N is the set of nonterminals.

Once a rule has been cracked to force actions to right edges, the actions can be ignored;
they do not affect grammar analysis. For example,



A - AD g
AO | @

isidentical to

A - AD g
AQ

from a grammar analysis point of view. The productions cannot be recombined to A — a, how-
ever, because at parser run-time the actions must be executed.

We shall present a proof, different from Brosgol’s, that LR's strength can be reduced to that
of LL, but beforehand, consider an LR grammar in which actions have been placed at all possible
positions in all productions. The augmentation effectively forces the LR parser to assume a one-
to-one correspondence between parser state and grammar position. LR's recognition strength
comes from its ability to be at more than one position in the grammar at once. If this advantage
istaken away, the LR parser would have a unique mapping from parser state to grammar position;
i.e. the LR parser could only recognize LL languages. Similarly, by placing actions at the left
edge of productions, the LR parser is forced to know its position in the grammar at the left edge
of every rule rather than at the right edge; which implies that it must predict which production it
will apply. Once again, this rendersthe LR parser only as strong asLL.

Theorem 2.1: Let G be an LR(k) grammar with productions of the form A - a. Construct a
new grammar, G’, by augmenting productions of G with unique semantic actions, @;, such that
productions of G’ are of theformA - @, a. Crack the productionsin G’ to force the actions to
production right edges and then remove the actions for the sake of grammar analysis.
GOLL(k) @ G OLR(K).

Proof:

Toshow that G’ O LR(k) O G OLL (k), we show that left recursionin Gisillegal and that k ter-
minals of lookahead are sufficient to predict each production. Three cases must be considered:

Case (i): Nonterminals in G with only one production, A — a. After augmentation, nonterminal
Ain G’ will be of the form:

A @a

which is cracked to form:

A A q
AY - @

Because G O LR (Kk), nonterminal A cannot be left recursive as productions of the form, A - A d
(whered O (N [] T)" with N the set of nonterminals and T the set of terminals) never derive any
terminal strings. Because no parsing decision is required to predict the single production of A
and because A is not left recursive, the original nonterminal Ain GisLL (k)-decidable (in fact, A
isLL (0)).



10

Case (ii): Nonterminals in G with exactly two productions are augmented to form:

A_>@10(
A- @B

Productions in A are cracked to force the actions, @, to production right edges. This yields the
corresponding portion of G’:

A AOq
A A B
AY - @,
A® . @,

The transformation to G’ preserves the LR condition if there does not exist a k-sequence that is
common to the lookahead sequences for A and A@. This indicates that k terminals must be
sufficient to predict the productions of A in G’ and, hence, to predict productions of Ain G. a
and (3 are not left recursive; if both were left recursive, nonterminal A would never derive any ter-
minal string and if one of them were left recursive, a shift/reduce error would occur in the aug-
mented grammar G’. To visualize the conjecture that the lookahead sets must be different for the
two productions, consider Figure 2.1.

So:
A_eAlqa, vy
A_eAdpB vy
AD _, o {FIRST (o y)}
A _ e, {FIRST\(BY)}
AD A
Sy Sp!
A-ADeq, vy A_APeB, vy

Figure 2.1 Partial LR (k) Machine

The general form of an LR(K) itemis [ A - a,y] [ASU86] with y the lookahead component
“‘inherited’”’ from the state pointing to state Sy and other items in state Sy. Because G’ is
assumed to be LR (k), the other items do not need to be considered; they, by assumption, do not
conflict with the items associated with A. If FIRST(ay) n FIRST(BY) # O then the automaton
would be unable to decide whether to reduce A® or A@| rendering G’ non-LR(k). The partial



11

parsing table for the automaton, Table 2.1, illustrates that if FIRST,(a y) and FIRST, (B y) wereto
overlap, areduce/reduce conflict would arise.

Table 2.1 Partial Parsing Table

Action Goto
State
FIRST(ay) FIRST,(BY) | A®D A@
0 rA® rA® 1 2
1 s3
2 A

The symbol rA® means reduce A® and s3 means shift and go to state 3 [ASU86]. Since the
assumption of G’ 1 LR (k) implies that FIRST,(a y) and FIRST (3 y) have no common k-tuples, k
terminals of lookahead are sufficient to predict which production of A in G to apply. As men-
tioned above, a, B in G’ must not be left recursive in order to leave G’ 0 LR(K). Hence, since a
and 3 are not affected by the transformation from G to G’, the original nonterminal A must not be
left recursive.

When G’ O LR(K), each nonterminal A in G with exactly two productionsis LL (k)-decidable.
Case (iii): Nonterminals, A, in G with more than two productions:

A - a
A-pB

A-1

can be transformed into a series of nonterminals with at most two productions by rewriting them
in the following way:

A-a

A A®

AD B

AD | AQ

AM _ ¢

This transformation does not affect the LR (k) nature of G. The results of cases (i) and (ii) may be
used because the A®") have at most two productions; hence, nonterminal A and all subsequent A®)
created in this fashion are LL (k)-decidable.



12

Cases (i), (ii) and (iii) indicate that, when G’ OO LR(k), each nonterminal in G is LL (k)-
decidable; therefore, G O LL (k).

To show that G OLL(k) O G’ OLR(k), it is sufficient to observe that, by lemma 2.1,
G OLL(k)O G OLL(K). Then, G’ 00 LR(k) since LL (k) O LR(k) [RoS70].

O

Theorem 2.1 directly shows that, in the worst case, an LR (k) grammar can be rendered only
as expressive as an LL (k) grammar. This result follows from the forced bijection between parser
state and grammar position at the point of action insertion.

The same action insertion that weakens LR grammars does not affect the nature of an LL
grammar — even if the productions are cracked in the LR-fashion to force actions to a production
right edge. We now show that the introduction of unique e-nonterminals at the left edge of all
productions in an LL (k) grammar has no effect upon its LL (k) nature; i.e. the transition from G
— G’, asdescribed above, does not affect LL (k) determinism.

Lemma 2.1: Construct grammar G’ from G as beforeintheorem2.1. G OLL(k) O G’ OLL (k).

Proof:
All nonterminas, A, in G are of the form:

A—»Gl
ASap

A S ap

wherea [0 T areaugmented in G’ to form:
A - A®
A - A@q,

A - A g,
AQ
AP _

AM _,

Because nonterminals A®) have only one production, they are trivially LL (k). Because, for the
augmentation of a production A - o; to A - A® q;, FIRST(A® a; y) = FIRST(q; y), the
transformation to G’ does not affect the lookahead set for productions; y is derived from sen-
tences of the form wA ysuchthat SO "\, WA ywithw O T, yOV". Hence, nonterminals that
are LL(k) in G are LL (k) in G’. Finally, because all nonterminals A and A®) in G’ are LL (k),
G' OLL(K).

O



13

Lemma 2.1 shows rule cracking in LL (k) grammars, as performed in Theorem 2.1 for
LR (k) grammars, has no effect upon LL (k) determinism. It is also the case that rule cracking for
arbitrarily-placed actions has no effect upon the LL (k) nature of a grammar. Informally, rule
cracking for actions not at the left edge, A - o @ B, introduces unique nonterminals, A" _, a,
with only one production; a construct which is clearly LL (k). The cracked rule that invokes A®
isof theform A — A() B and has an unperturbed |ookahead set.

In contrast, the placement of actions within a grammar does restrict how a grammar can be
rewritten. The proof that LR (1) is equivalent to LR (k) in [Knu65] relied upon the fact that gram-
mars could be arbitrarily rewritten — or, more precisely, Knuth's proof did not consider the case
where a specific sequence of semantic actions must be ‘‘folded’’ into the sequence of terminal
matches. When this ability to arbitrarily rewrite a grammar is removed, or when an exact
sequence of actions must be triggered relative to the terminal matches, LR(K) is stronger than
LR(1). This should not surprise the reader in that, under the stated conditions, we have shown
that LR(K) is equivalent to LL (k) and LL (k) is known to be stronger than LL (k—1) [RoS70]. We
formalize this notion in the following theorem.

Theorem 2.2: When actions may be placed arbitrarily among the productions of a grammar,
LR(K) grammars cannot, in general, be rewritten to be LR(k-1); i.e. LR(k-1) O LR(Kk) for k>1.
Proof:
We prove that LR (K) is stronger than LR (k—1) by showing that there exists at least one grammar,
augmented with actions, which is LR (k) that cannot be rewritten to be LR (k—1) for some k. Con-
sider Grammar G2.1 that is LR (2), before cracking, where x and y are terminals.

Ao @ Xy

A @, xz G2.1

Nontermina A must be cracked to form Grammar G2.2:
A - AD xy
A - A@xz
AQ @,
A? _ @,

G2.2

Clearly, this grammar can be rewritten an infinite number of ways. But, to preserve the semantics
of the trandation and the syntax of the language, the order of action execution and terminal
recognition must be preserved; e.g. @, cannot be moved to the position between the x and y in
production one because the actions @; must be executed before x has been recognized. Grammar
G2.2 generates a language with two sentences, x y and x z, with the constraint that a reduce,
either A® or A®@, must occur before a sentence is recognized. In order to reduce the correct ¢-
production, two terminals of lookahead are required to predict which sentence will be recognized.
No matter how the grammar is rewritten, as long as it satisfies the constraints mentioned above,
entire sentences must be seen to avoid a reduce/reduce conflict relative to A®Y and A@. This fact



14

implies that one terminal of lookahead always will be insufficient because two terminals are
required to uniquely identify a sentence; Grammars G2.1 and G2.2 can be rewritten to be LR (1).
There exists at least one LR(k) grammar that cannot be rewritten to be LR(k-1). Therefore,
LR(k-1) O LR(k) for k>1 when actions can be arbitrarily placed among the productions of a
grammar.

O

In effect, Theorem 2.2 shows that LR(k) is not equivalent to LR(1) because embedded
actions place severe constraints upon how a grammar may be rewritten. From the point of view
of action triggering relative to terminal matching, Theorem 2.2 shows that there exists a language
which is LR(k) with no LR(k-1) equivalent that preserves the action-triggering, terminal-
matching, sequence. Although there may be many grammars with actions that can be rewritten as
LR(2), in general, a LR(K) grammar with actions cannot be rewritten in LR(1) form.

We conclude that LL (K) is stronger than any known deterministic parsing strategy with less
lookahead, by combining the results of Theorems 2.2 and Corollary 2.1, given the constraint that
actions may be placed anywhere within the associated grammar. Corollary 2.2 states this for-
mally:

Corollary 2.1: LR(k-1) O LL (k) when actions may be placed arbitrarily among the productions
of a grammar.

Proof:
Let G’ be a grammar whose productions have been cracked to allow a set of arbitrarily placed
actions. G’ JLL(k) O G’ OLR(k) and, by Theorem 2.2, LR(k-1) O LR(k), which implies
G’ I LR(k-1) by trangitivity. Therefore, there are grammars, G’, which are LL (k), but not
LR(k-1).
O

The reader may argue at this point that, in practice, there are LR(k) and even LR(k-1)
grammars with actions that are not LL (k). While thisis correct, we consider the general case of
grammars with actions interspersed arbitrarily among the productions. Our assumption allows us
to always choose actions on the left edge. We do not suggest that LL is as strong as LR in prac-
tice, we merely show that k> 1 terminals of lookahead are very useful due to the deleterious effect
of action placement on recognition strength. For example, Grammar G2.1 is LR(0) without
actions and LR (2) with actions.

This section provided a proof that LR (k) grammars are not always more expressive than
LL (k) grammars due to the introduction of extra nonterminals resulting from rule cracking.
Lemma 2.1 supported a step in the proof of theorem 2.1, but also suggests the notion that LL (k)
grammar anaysis is not affected by the introduction of actions. Theorems 2.2 and Corollary 2.1
show that LR(1) is not equivalent to LR(k) when actions can be introduced arbitrarily and that,
unfortunately, LL (k) is the largest class of languages that can be generated with a context-free
grammar augmented arbitrarily with actions; hence, using k>1 terminals of lookahead greatly
increases the strength of a particular parsing method. For completeness, in the next section, we



15

explore how the LR derivatives compareto LL.

222LALRand LR VersusLL

The results of the previous section provide the framework for re-examining the relationship
between LR-derivative grammars and LL grammars when actions may be placed arbitrarily
among the productions. As one might expect, because LL and LR are equally strong for transa-
tion purposes, the LR derivatives, which are weaker than LR, are weaker than LL. This section
we extend Brosgol’s work by showing that LALR(k) O LL (k) and SLR(k) U LL (k) wheress,
without actions, no strict ordering is observed.

Because LALR(1) is a subset of LR(1), one can observe that if a grammar G, augmented
with actions on al production left-edges, yielding G, is LALR (1), the original grammar G must
beLL (1). Thefollowing corollary states this supposition formally.

Corollary 2.2: G’ O LALR(K) is a sufficient condition for the corresponding grammar, G, to be
LL (k); where G’ is constructed asin theorem 2.1.

Proof:

Since LALR(k) OLR(k) [ASU86], if G’ is LALR(k) then it is aso LR(Kk).
G OLR(k) O G OLL (k).

O

Note that the opposite of corollary 2.2 is not true; G OLL(k) does not imply
G’ OLALR(k). G may till be LL (k) evenif G’ isnot LALR(K) because there is no strict order-
ing between LALR(1) and LL (1) for grammars without actions. For example, the following
grammar, in YACC notation, isLL (1), but not LALR(1).

S . aA
S . bB
A - Ca
A - Db
B - Cb G2.3
- Da
- E
- E

—

mooOw

The problems for LALR (1) arise from the permutations of C, D, a, and b in rules A and B that
make FOLLOW,(C) and FOLLOW,(D) the same; therefore, lookahead cannot be used to guide
the parser when reducing C and D. Once the lookahead has been effectively removed from con-
sideration, the parser must rely upon context (state) information. Unfortunately, the grammar is
not LALR(0); this fact, combined with the FOLLOW; overlap, renders the grammar non-



16

LALR(1). A reduce/reduce conflict between rules C and D is unavoidable.

Corollary 2.2 states that all LALR (k) grammars, with actions arbitrarily interspersed among
the productions, are LL (k). Further, there are grammars which are LL (k), but not LALR (k). Con-
sequently, one may state that LL (k) is strictly stronger than LALR (k).

Corollary 2.3: LALR(K) O LL (k) when actions may be placed arbitrarily among grammar pro-
ductions.

Proof:

Let G’ be a grammar augmented with actions. G’ U LALR(k) O G O LL (k) by Corollary 2.2,
therefore, any LALR (k) grammar is LL (k) if one is free to place actions on the |eft edge. There
exist LL (k) grammars which are not LALR (k) such as Grammar G2.3; hence, LL (k) is strictly
stronger than LALR (k) in the worst case action-placement scenario.

O

Because LALR(K) is known to be a proper superset of SLR(k) the relationship between
SLR(K) and LL (k), followstrivially:

Corollary 2.4: S R(K) O LL (k) when actions may be placed arbitrarily among grammar produc-
tions.

Proof:

S R(K) OLALR(k) and LALR(K) OLL(k), therefore, SLR(k) O LL (k) by transitivity when
actions may be placed arbitrarily.

O

Previously, LL (k) was considered weaker than LR (k) and somewhat weaker than LALR (k)
and SLR(K) in practice. We have shown that, at least in theory, LL (K) is as strong as LR (k) and
stronger than LALR (k) and SLR (k) when grammars are arbitrarily augmented with actions. It is
interesting to note that the relationship between SLR, LALR and LR does not change with arbi-
trary action placement; i.e. SLR(k) O LALR(k) O LR (k) which follows directly from Corollaries
2.2, 2.4, and Theorem 2.1.

Augmenting an LR grammar with semantic actions can introduce ambiguities because pro-
ductions must be “‘cracked’’ to create reductions corresponding to the action positions. This is
well known to anyone who has developed translators based on LALR(1) grammars. Murphy’s
Law predicts that the position in a grammar where an action is needed most is precisely the posi-
tion where rule cracking will introduce an ambiguity. In contrast, LL (1) grammars are insensi-
tive to action placement, but many useful grammars are not LL (1).

Parsers are currently restricted to a single terminal of lookahead primarily because LR(1),
upon which most parsers are based, is theoretically equivalent to LR (k) and because k>1 termi-
nals of lookahead can lead to exponentially large parsers. Algorithms for constructing LR (k) and
LL (k) parsers can also be significantly more complicated than those for LR(1) or LL (1) parsers
and, are generally, not considered worth the effort. However, k>1 terminals of lookahead are
necessary in order to relax the sensitivity of LR grammars to action placement and to increase the



17

recognition strength of LL parsers. Although k terminal lookahead presents some challenges in
implementation, the difficulties can be overcome as proposed by this thesis. The next section
describes how other researchers have attacked the problem of deterministic parsing using k>1
terminals of lookahead and contrasts these strategies with our approach.

2.3 Comparison to Previous Work in LL (k) and LR (k) Parsing

LL (k) [RoS70] and LR(K) [Knu65] parsing has been studied vigorously from a theoretical
perspective; e.g., the research of [AhU72, DeR71, HSU75, Knu71, LeS68, Sip82, SiS82, SiS83,
SiS90, Ukk83]. Practical construction of such parsers and their variants has been largely avoided
due to the apparent unavoidable exponentiality in k. Indeed, very few papers actually consider
computing lookahead information for k>1 ([ADG91, KrM81] are exceptions). Most practical
work has centered around the k=1 case, e.g., [DeP82, Ive86, Joh78, MKR79, Pen86] and com-
mon textbooks such as[ASU86, FiL88].

It has long been known that modulating the lookahead depth according to the needs of each
inconsistent parser state can reduce parser size; e.g., [DeR71] suggested this in his paper on
SLR(Kk). Others have taken this one step further to allow infinite regular lookahead languages
[BeS86, CuC73] instead of normal k-bounded regular languages. We use varying amounts of
lookahead in order to reduce the time required to compute lookahead information as well as to
reduce the resulting parser size. [KrM81] does not consider modulating k when computing
LALR (k) lookahead sets and indicates that k=1 is the practical lookahead depth for their method.
[ADGO91] defers computation of lookahead sets for LR (k) parsers until parser runtime and uses
only as much lookahead as necessary to make each decision. A similar technique can be used
staticaly, which we employ for the variants of LL (k) and LR(K), at grammar analysis time, to
compute only that lookahead information necessary to render a state deterministic and for only
those states needing |ookahead.

Virtually all parsing theory work considers the lookahead k-tuples associated with a deci-
sion state to be atomic. On the other hand, we consider individual terminals to be atomic, which
results in greater flexibility with regard to grammar analysis and parser construction. We define
LLY(k) and LR(k) parsers that examine only individua terminals at the various lookahead
depths and no m-tuples (1=m<k). These parsers use a covering approximation to full lookahead
sets — with potentially linear time and space lookahead computation complexity that reduces
lookahead information size from O(|T |¥) to O(|T | x k). The approximate lookahead sets can
be used to construct efficient decisions which handle most parsing decisions. Chapter 7 discusses
the generalization of LL*(k) and LR*(k) decisions to LL™(k) and LR™(k) decisions, which com-
pare subsequences of size at most m (composed of terminals from contiguous or noncontiguous
lookahead depths).



18

To facilitate parsers that use only the necessary information to make state transitions,
parsers with heterogeneous states must be constructed. Most parsing work revolves around
parsers composed of tables and an interpreter: The parsers have homogeneous states; i.e. each
state must be as complex as the most complex needed to parse the particular language of interest.
[BeS86, CuC73] build different cyclic-DFA lookahead decisions at each LR (0) nondeterminism,
but still employ states that are homogeneous, as each state may have a lookahead DFA.
[ADG91] compute lookahead at parse time, rather than at analysis time, by adding a new LR
action called look; again, parser states are homogeneous. [Pen86] developed a parser generator
that generates non-interpretive LALR(1) parsers in 8086 assembly language. Later, [Rob90]
developed a similar method of encoding non-interpretive bottom-up parsers called ‘‘ Recursive
Ascent’’ parsers. Both of these authors were concerned with parsing speed. On the other hand,
we are concerned with varying the complexity of decision states to reduce the exponential worst-
case nature of LL (k)- and LR (k)-based parsersto near-linear typical behavior.

Algorithms for computing k>1 lookahead sets are rare and typically operate on canonical
LR(0) machines (e.g., [KrM81]) or the grammar itself. If lookahead depths greater than one are
to be used, practical algorithms and data structures for computing lookahead sets, ensuring parser
determinism, and parser construction must be developed. We represent grammars as a group of
NFA'’s, called grammar lookahead automata (GLA's), which cover the language generated by the
CFG. Because lookahead strings form a finite regular language, we consider lookahead informa-
tion to be acyclic DFA’s, which we encode as child-sibling trees. Lookahead computations can
then be elegantly described as a form of constrained traversal of a GLA; the computation is simi-
lar to NFA to DFA conversion. To further simplify lookahead computation, we define lookahead
operations as LOOK| rather than as combinations of FIRST, and FOLLOW,,.

The literature discusses the LL (k) and LR(K) classes separately. While the two strategies
are very different in terms of parser state construction, they are identical in terms of how they
make parser lookahead decisions. The only difference between an LL (k) parser decision state
and an LR (k) parser decision state is the type of actions induced by the lookahead information.
For example, an LL (k) parser may ‘‘predict’”’ a production upon some terminal sequence whereas
an LR (K) parser may perform a ‘‘shift’’ or ‘‘reduce’’. We abstract |ookahead decisions, regard-
less of the parsing method, to an induces relation that maps lookahead sequences to parser
actions. In this manner, many aspects of LL (k) and LR(k)-based parsing may be discussed
together.

Previous tests for the various grammar properties have complexities that are aways
exponentia in nature and do not compute the lookahead sets needed for parser decision states.
Our method computes lookahead sets and compares them to determine if the appropriate property
is satisfied. This grammar-driven approach enables us to use minimal lookahead and to compute
lookahead only for those decisions that require it. Figure 2.2 summarizes the methods used to
test grammars for LL (k) determinism.



Method

Description

Transformation to LR

This method transforms the LL (k)/SLL (k) determinism
problem into the LR(k)/SLR(k) determinism problem
which can be solved in space O ((k+1)? x |G |?) and in
time O((k+1)% x |T|¥x |G |?) [HSU75]. Using the
results of [Bro74], [HSU75] showed that the LL
determinism problems were easily reducible to LR
determinism prablems and, hence, they could be solved
in the same space and time complexity. These
agorithms rely upon the construction of a set of
automata denoted M, r)(G) (in the notation of
[SIS90Q]), for some CFG G, which accepts those viable
prefixes of G which may be followed by u O T* in some
right sentential form [HSU75].

Dual of LR

A dua to the usual LR canonical parser exists for LL
[SiS82, SiS83, SiS90]. Similarly, [Si83, SiS90] present
a scheme for LL (k) and S_L (k) testing which dualizes
the construction of M g(,)(G) automata for LR, yielding
ML (u)-st(G). This dual test is more efficient than
transforming to LR and using the LR testing algorithms.
Specifically, testing for the LL (k) property is a factor of
|G| faster than testing for the LR(K) property, but
introduces an extra 2% term: it can be solved in space
O(2“x |G |)andintime O((k+1) x 2 x | T |¥x |G ).

Compar e lookahead sets

Computes lookahead sets for each alternative production
at a decision point and verifies that the lookahead sets
have no lookahead sequences in common up to a depth
of k. Lookahead sets rarely grow to the upper bound of
O(|T [¥) in size and rarely need al k terminals; hence,
an algorithm that examines only those permutations of
TX which are necessary for each decision is potentially
useful in practice. Comparing production lookahead sets
has exponentially complex time and space requirements
like the other methods, but performs better in practice;
eg., testing for the SL(k) property is
O((IG |+ [PI/IN[)xkx [T[").

Figure 2.2 Comparison of LL (k) Determinism Methods

19



20

The previous methods are obviously impractical as they test multiple automata against per-
mutations of length k sequences of terminals. Thisis not useful because |T | isimpractical for
even small |T| and k. Table 2.2 demonstrates the impracticality of the previous analysis algo-
rithms. It reflects how much time is required to create |T |" lookahead n-strings and print them
to the null device (/ dev/ nul 1 ). The times do not include the effort that would be necessary to
examine the small automaton, My (), associated with each input permutation u.

Table 2.2 Timeto Create | T |" Lookahead Permutations (| T |=100)

create |T |" lookahead n<4
permutations | 1 2 3 4

time (secs) 0.0 | 09 | 146.2 | 53564.3

Computing and then comparing lookahead sets has an additional advantage over the theoretical
methods: Productions may easily be tagged with the lookahead sequences which render the asso-
ciated decision nondeterministic. Very specific warning messages may be reported.

Thus far, we have provided motivation for the use of k>1 terminas of lookahead and
described how others have attacked the problem of constructing LL (k) and LR(K) parsers. The
next section provides an impractical, but useful way to view parsing. Specifically, we define an
optimal parser which examines each input symbol at most once; in order to reduce the number of
lookahead inspections, an optimal parser construction algorithms would have to consider indivi-
dual terminas rather k-tuples and would construct parsers that make decisions of varying com-
plexity. Using this fundamental change of perspective, Chapters 3 and 4 develop methods for
constructing practical LL (k)- and LR (k)-based parsers.

2.4 Optimal Parsing of Deterministic Languages

In theory, parsers change state by examining a k-tuple and then shifting the input by at most
one symbol (terminal), which implies that tokens will be tested at least k times. LL (k) and LR (k)
parsing is widely held to be time O(n) for an input of size n; however, the time complexity is
more precisely O (k x n). The ability to construct parsers that examine each input symbol exactly
once, regardless of k, haslittle impact on parsing speed as n is normally much larger than k; how-
ever, this notion emphasizes the fact that parser decisions can reduce their time and space com-
plexity by using less than the maximum lookahead depth and/or by ignoring some lookahead
depths.



21

Our approach to parsing for k>1 relies upon the idea that individual terminals, rather than
k-tuples, are the basic, atomic, entity of parsing. Optimal parsing can be seen as motivating the
“‘gplitting’” of the k-tuple atom. This new definition that a terminal comparison is an atomic
operation directly motivates the linear approximations LL*(k) and LR*(k) which compare 1-
tuples (sets) rather than k-tuples; see Section 3.7.1 for a precise definition. Further, we denote
parsers or parsing decisions, whose largest atomic operation is an m-tuple comparison, LL™(k)
and LR™M(K); see Section 7.24.

Parsers normally examine lookahead to make a decision and then promptly *‘throw out’’
much of the information thus obtained. An optimal parser must record the result of decisions by
state splitting — i.e. split states that have at least one edge that is traversable by more than one
lookahead sequence and then remove impossible items from each of the new states. The new
states/edges indicate that a certain lookahead configuration was seen and, hence, the set of possi-
ble future actions is smaller for each of them. The number of new states replicated for a given
state (for both LR(K) and LL (k)) will be roughly equal to the number of possible unique input
sequences that induce a transition to that state. Both LR and LL parsers may employ this scheme
even though they record lookahead configuration information differently.

This section demonstrates state splitting for LL (k) and LR (k)-based parsers and, for LL (k)
grammars, defines an Optimal Norma Form (ONF) which yields optimal parsers using normal
construction techniques.

2.4.1 Structure of Parser Comparison Sequences

Conventional parsing examines each input symbol k times. However, an optimal parser
inspects each input symbol at most one time regardless of the size of the lookahead buffer, k.
This section illustrates the structure of lookahead decision sequences for conventional parsers,
optimal parsers and hybrid parsersthat use a variety of decision templates.

Figure 2.3 illustrates the usual parsing strategy, for k=3, of comparing 3-tuples, shifting the
input by one, and then comparing another 3-tuple; & (T, Tp, T3) is thei™ 3-tuple decision, based
upon the lookahead buffer (ty, Ty, T3), and & isthe i input symbol (token).



22

Figure 2.3 Conventional Parsing for k=3

The dotted box associated with decisions 3, ... 8, highlights that after the first k tokens have been
read, each token, T;, will be examined k times. In contrast, an optimal parser might perform the
sequence of comparisonsillustrated in Figure 2.4.

aq ao as ag asg ag ...
L | L | L |

01 %, 03
Figure 2.4 Optimal Parsing for k=3

Many decisions can also be made from contextual information alone; i.e. no lookahead is needed
a all. Therefore, an optimal parser may actually use fewer than one comparison per input token,
but generally, the number of comparisons depends on the parsing method.

If one could take advantage of the fact that the grammar had few constructs that required
three tokens of lookahead, one could make comparison sequences similar to that in Figure 2.5.

aj as as ag dsg dg ...

& 8 &

%

Figure 2.5 Near-Optimal Parsing where k-tuple Is Not Atomic

Occasionally, a decision will require three tokens, but in general decisions are made using only
onetoken (or none at all).



23
2.4.2 Optimal LL (k) Parsing

LL (k) parsers have only type of action that need be induced by lookahead: Before recogni-
tion of a nonterminal begins, one of the alternative productions must be predicted using up to k
terminals of lookahead. If lessthan k symbols are consumed before the lookahead buffer must be
examined again, the parse is not optimal as input symbols will be examined more than once.
This section defines an optimal normal form (ONF) for LL (k) grammars for which a parser, built
in the conventional manner, is optimal. In addition, this section outlines a method for splitting
the states of an LL (k) parser to render it optimal.

A grammar comprised of productions that always have k terminals on the left edge will
result in an optimal LL (k) parser; such a grammar is said to be LL (k) optimal. Although many
definitions are possible, we define an optimal LL (k) grammar as follows:

Definition: A grammar is said to be in Optimal LL (k) Normal Form, denoted ONF, if each non-
terminal is of the form:

A - GlBl
A - (Xsz

A - dmPBm
wherea; OTX, B O (N [] T)", misthe number of productions of A, and a; # a; fori #j;i.e all
productions may be predicted unambiguously and without examining tokens needed for the pred-
iction of another nonterminal’s productions. Our definition of ONF is similar to Greibach Nor-
mal Form [Gre65] except that we restrict our discussion to LL (k) grammars, require k token

sequences on the left edge (versus one), and do not restrict the form of productions past the k-
sequence prefixes.

The simplest grammar in ONF is of the form:

A a

which has no decision to make as there is a single production and, hence, a single choice; nonter-
minal AisLL (0). In contrast, the LL (2) Grammar G2.6 has two decision points (on the left edges
of A and B):

A - ab
A - aB
B-c
B-d

G2.6

For nonterminal A, lookahead set (a,c), (a,d) induces a predict A — aB action. The T, looka
head components ¢ and d used to predict A’s productions will be matched in B, which must also
be used to distinguish between B's dternative productions. Hence, this grammar is not in an



24

optimal form as at least one input symbol will be inspected more than once. In general, examin-
ing an input symboal in one decision excludes its use by any other decision. Figure 2.6 presents
the LL (2) machine. Most transition arcs are labeled as a where a is the input to be consumed
during transition; transitions out of production prediction states consume no input and are of the
form €|v where v is the lookahead component which must be present to make the transition.
Calls to other nonterminals are as edges labeled with the nonterminal name (upper-case Latin
letter). Some states are labeled for reference in the text.

Figure 2.6 LL (2) Machine for Grammar G2.6

To make a transition out of state Sy, we examine (11,1,). Entering state S; by traversing edge
€ |ac,ad does not record which of ac or ad was found on the input stream. Later, in state Sg, the c
or d must again be used to distinguish between productions. This is the source of Grammar
G2.6's nonoptimality. If one were to split state S, into two new equivalent states, the results of
the prediction in state S, could be *‘remembered’’. Figure 2.7 shows the results of splitting state
S:.



25

a b €

- O
a B,
a B,

-O
-O
-O
&—==-0——0
&—=-0——-0

Figure 2.7 Partial Optimal LL (2) Machine for Grammar G2.6

Splitting state S; into S; and S;' affects the states reachable from S; and S;’ (duplicates and
simplifies) because more information is available than before as to what is coming on the input
stream. For example, state S5, no longer has a decision to make because the previously present
states for B — d cannot possibly be visited. Similarly, state S;' has only one transition asB - ¢
cannot possibly be applied.

Splitting the decision state S; to ‘‘remember’’ the results of examining 1, and T»,
corresponds to duplicating A — aB and separating the productions of B. Separating B's produc-
tions removes a decision because the correct production to match will be determined by the
invoking nonterminal, A. Figures2.6isto Figure 2.7 as Grammar G2.6 isto Grammar G2.7.

A - ab
A - aB;
A - aB, G2.7
B, -c
B, - d

Parser state splitting is analogous to the instantiation of nonterminals in the grammar domain.
For example, Grammar G2.8 is the same as Grammar G2.6 except that the productions of B have
been instantiated into the reference to B in nonterminal A, which yields an optimal grammar.

A - ab
A - ac G2.8
A - ad

Occasionaly, instantiation will force left-factoring, which is not always possible when grammars
are augmented with semantic actions. For example, consider Grammar 2.9 which represents an
LL (1) grammar after instantiation of some nonterminal into A. It must be left-factored to remain



26

LL(2).
A - ab
A_bec G2.9

After left-factoring, we obtain Grammar G2.10.

A - ab
A - bB
B-c
B-d

G2.10

If actions had been placed at positions ¢; and e,, however, this left-factoring could not take place
as actions cannot be merged. Lookahead decisions could be attached to actions to remember their
original context, but optimal parsers are intractable anyway; hence, we are not overly concerned
by thisissue.

It is not aways possible to generate optimal grammars by instantiation. Consider Grammar
G2.11.

S - AB$
A - ab
A_a G2.11
B-c
B-.d

Nonterminal A is nonoptimal as two symbols are required to predict the productions and the
second symbol is also required to predict the productions of B after the recognition of A. State
splitting can be done in several ways here, but one grammar transformation results in Grammar
G2.12.

S5 AS$

A - abB

A - aB;

A - aB,

B_c
B_d
By - ¢
B, - d

G2.12

In this case, we have moved what follows the reference to A to the ends of the productions of A,
without changing the language. Then, instantiation proceeds as before. The reference to B in
A - abB is not instantiated for two reasons: First, it would cause Grammar G2.12 to become
non-LL (2) and, second, it is unnecessary to do so asthereis a prefix of length 2. Another type of
state splitting can be done which records the result of the lookahead decision in B by returning to



27

adifferent state in A for each lookahead sequence.

This section defined an optimal normal form, ONF, for LL (k) grammars for which a parser,
built in the normal fashion, is optimal. Further, a scheme for splitting parser states was outlined
and was shown to be analogous to a grammar transformation. The next section characterizes
when LR (K) parsers need to split states to become optimal and provides an example state splitting

strategy.

2.4.3 Optimal LR(K) Parsers

The optimal LL (k) parsers of the previous section made decisions in the states associated
with the left edge of productions. LR (k) parsers, on the other hand, make lookahead decisionsin
any state that is LR(0) inconsistent; i.e. any state with more than one item in the core that con-
tains a reduce item, A - ae. Optima LR(K) parsers split states in a manner similar to optimal
LL (k) parsers. This section characterizes LR(K) parser state splitting via an example grammar
for which the LR (2) machine and optimal LR (2) machine are given.

Optimal LR (k) parsers have exactly one state transition arc per lookahead sequence, which
requires that target states be split. In this way, the results of each lookahead examination, per-
formed in some state p, are recorded for use by states reachable from p. Figure 2.8 shows a gen-
eric decision state.

p:
A—»(X.B ,yl

aly,

B—)G. ly2

Figure 2.8 Generic LR(K) Parser Decision State

where B =x[’ and x 0 V. Again, transitions are marked with o |3 where a is the input terminal
to consume and 3 is the lookahead component that must be on the input stream to make the tran-
sition. If |y, |>1 then states reachable by that transition may be nonoptimal. Therefore, the tran-
sition y; out of state p must be separated into transitions with only one lookahead sequence,
which forces duplication of g — one for each element of v;.

To better illustrate optimal LR (k), consider Grammar G2.13, whichisLR(2).



28

S - Aa$$

A - aBc

A G2.13
B-b

B -

A partial LR(2) machine, in the notation of [ASU86] except for the u | v edge notation, is given in
Figure 2.9.

Syt
S eAa$s ,$$
A - eaBc ,a$
A_e 3%

a |ab,ac

Sy
A _ aeBc ,a$
B_.eb ,ca
B_.e ,ca

b |bc

83:

B_.be ,ca

Figure 2.9 Partial LR(2) Machine for Grammar G2.13

In state Sq, input a induces a shift for A — eaBc and a reduce for A — . Hence, a lookahead
depth of two is required — input ab and ac induce a shift for A - eaBc and input a$ induces a
reduce for A - e. The second input symbol, one of {b,c,$}, will be used again to induce a shift
forB — eborareducefor B — ¢ Grammar G2.13 is nonoptimal.

The LR(2) machine in Figure 2.9 can be made optima by splitting S, and then
duplicating/simplifying all states reachable from S,. Such an optima machine is given in Figure
2.10.



29

Sl:
S—»‘Aa$$ ,$$
A - eaBc ,a$
A_e 3%
|ab alac
Sz: Sz':
A - aeBc ,a$ A - aeBc ,a$
B _-eb ,ca B_-e ,ca
b |bc

Si:

B_.be ,ca

Figure 2.10 Partial Optimal LR (2) Machine for Grammar G2.13

States S, and S," are simplified because the transitions entering them have only a single looka-
head sequence; e.g. the previous item B - e can no longer be reached because input sequence ac
will no longer force atransition to state S,. State S; is duplicated, but simplification removes all
itsitems and, therefore, it disappears.

Optima LR (k) and LL (k) parsers are very similar. Both split states (duplicate subgraphs)
to ‘“‘remember’’ the terminal sequence matched on the input stream. After splitting, transitions
will have only one terminal sequence in the lookahead component of the transition label.
Because of these simplified transition arcs, the states in the duplicated subgraphs will be much
simpler as the set of possible items will be greatly diminished. The only rea difference between
optimal LL (k) and LR (k) parsersis that, generally, a parser transformation has a corresponding
grammar transformation for LL (K) parsers. With regards to error detection, optimal parsing
detect errors exactly as early as before except that the recognition may occur in a different state
due to state splitting. Splitting states increases the context information available to a parser and,
hence, will not delay error detection. Normally, error detection is delayed only by inaccurate 10o-
kahead routing information. For example, SLL (k) parsers have less accurate lookahead informa-
tion than LALL (k) parsers; the effect is that SLL (k) parsers do not detect errors as quickly as
LALL (k) parsers even though both parsers have the same number of states.

The method of obtaining optimal parsers described in this section does not consider user-
defined semantic actions. A more general approach would attempt to liberate the actual looka-
head examinations from the decision states in an effort to avoid left-factoring, which cannot be
generally done in a grammar augmented with actions, and explosive state splitting. We did not
explore thisissue due to optimal parsings fundamental lack of practicality.



30

In this chapter, we gave motivation for the use of k> 1 terminals of lookahead and provided
a comparison of our approach to the previous work done in the area of LL (k) and LR (K) parsing.
Our strategy revolves around parsers that make decisions of varying complexity and parser deci-
sions that consider terminals, rather than k-tuples, atomic entities; optimal parsing can be seen as
inspiring this strategy. The next two chapters use the observations given in this chapter to pro-
vide a framework for grammar representation, parser state construction, decision state abstrac-
tion, lookahead computation, and lookahead representation.



31

CHAPTER 3 PARSING

The previous chapter described why more than a single lookahead symbol is needed and
outlined why the work done previously, in the area of LL (k) and LR(k) parsing, is mostly
impractical. To provide a practical means by which parsers with large lookahead buffers may be
constructed, we must dispense with the norm of homogeneous parser states, uniform lookahead
depth, and atomic k-tuples as in Section 2.4 on optimal parsing. This necessitates a nontrivial
change of perspective with regards to parser construction. Hence, this chapter presents new ways
to think about representing grammars, parsers, and parsing decisions.

For the purpose of grammar analysis, we store grammars as a group of intertwined NFA's,
called grammar lookahead automata (GLA’S), that represent the collection of all possible looka-
head languages for all grammar positions. In fact, GLA’s realize a covering, regular approxima-
tion to the underlying CFL of the grammar. The lookahead sequences for a particular parsing
strategy of depth k for a position in the grammar correspond to a subset of the sequences of non-¢
edges along the walks of length k starting from the associated GLA state. Lookahead computa-
tions are described as bounded walks of a GLA where the lookahead sequences are encoded as
lookahead DFA; in practice, we represent the lookahead DFA as child-sibling trees. The reader
will notice asimilarity to NFA to DFA conversion.

Different decision states may have different lookahead requirements. Section 3.7.2 pro-
vides empirical data that suggests that the vast majority of lookahead decisions, 98.57% in our
study of 22 9L (k) grammars, can be handled with no lookahead or with a single lookahead sym-
bol. When more than a single token of lookahead is required, it is often the case that a linear
approximation to the normal, exponential lookahead information can be used. We define C*(k)
decisions as decisions that look no more than k terminals into the future and compare at most 1-
tuples (sets of terminals). To facilitate parsers that take advantage of these decision states of
varying complexity, we describe a mechanism for representing parsers with heterogeneous states
in Section 3.6.

The various parsing strategies construct parsers with different states and state actions, but
the lookahead decisions within decision states are identical. We abstract the concept of a
lookahead-to-action mapping as a mathematical relation called induces in Section 3.7.4, which
isolates the required lookahead information (and it computation) from the details of implement-
ing the mapping. Thus, any transformation or compression on an induces relation is applicable
to any parsing strategy.



32

In general, this chapter describes the foundations upon which practical LL (k)- and LR (k)-
based parsers are built. We describe the representation of grammars, heterogeneous parsers, and
parsing decisions.

3.1 Grammar Representation

Grammar analysis computes lookahead sets for parser construction and for testing parser
determinism. Many algorithms operate on the grammars themselves (stored as simple lists of
productions) while some of the LR-based algorithms operate on the canonical LR machines. We
represent grammars, regardliess of the parsing strategy, as a collection of NFA’s called grammar
lookahead automata (GLA's), which realize a covering, regular approximation to the underlying
language of the grammar. GLA’srepresent the collection of all possible lookahead languages for
al grammar positions. The possible lookahead sequences of depth k for a position in the gram-
mar correspond to the sequence of non-€ edges along the walks of length k starting from the asso-
ciated GLA state. The edges found along the walks can be recorded as deterministic finite auto-
mata (DFA’s), which we store as child-sibling trees. Consequently, all lookahead computations
for any LL (k) or LR(K) variant can be elegantly described as constrained walks of GLA's.

Our GLA’s are reminiscent of the transition diagrams of [ASU86] except that only termi-
nas and € may appear as transition (arc) labels. In addition, each nonterminal, A, has ¢-
transitions emanating from its accept state which point the nodes immediately following refer-
encesto A. There exists a state in the GLA for each position in the grammar and a transition for
each terminal and nonterminal reference appearing in any production’s right-hand-side. To con-
struct GLA’s, we create a state, p; for each position (item) in the grammar and two states, p, and
ga for each nonterminal A where py is the nonterminal entry and gy is the nonterminal accept
state; then, we construct GLA transition arcs as per the algorithm in Figure 3.1.



A-deaef

A-deAef

A—»a.l

A — GB.]_B

Connect the states created for the positions e; and e,
with atransition labeled a.

Make an e-transition from the state created for e, to state
Pa.

@-->pA

Make an e-transition from pa to the state created for e;.

(Pa)—=—(y)

Make an e-transition from the state created for e; t0 ga.
€

(%

Make an e-transition from gg to the state created for e;.

@)=

Figure 3.1 GLA Construction from CFG

33



34

Dashed edges reflect ‘‘pointers’ to other states; they are not drawn to increase clarity as their
inclusion would cause a spagetti effect. This representation of a grammar, G, effectively con-
structs a single NFA whose envelope covers the underlying context-free language, L (G). It
should be stressed that GFA’ s are not purely NFA's because a grammar-to-GL A-state mapping is
required.

The language of a GLA is generaly larger than the underlying context-free language even
when L (G) is regular and it will be up to the algorithms themselves to determine which transi-
tions to follow in the GLA when collecting lookahead information. The sophistication of the
algorithm and, hence, the accuracy of this information will often be the distinguishing factor
between parser classes; e.g., SLR(k) and LALR (k) differ only in lookahead information [ASU86].

Toillustrate the GLA construction algorithm, consider Grammar G3.1.

A - aAa

A_b G3.1

The associated GLA is shown in Figure 3.2.

Figure 3.2 GLA for Grammar 3.1

The language described by nonterminal AisL; ={a"ba" | n = 0} whereas the regular envelope
of theGLA isL, ={a"ba"}; hence, L, coversL,L; OL.

For the most part, GLA’'swill beillustrated as if they were constructed via the algorithm in
Figure 3.1, however, this representation is idealized for discussion; in practice, dlightly different
GLA’s are actually constructed. In an effort to reduce grammar-analysis algorithm implementa-
tion complexity, a convention concerning GLA states is followed — each state has at most two
arcs emanating from it, denoted p - edge; and p - edge,, where p - edge, is dways labeled €, if
it exists. Figure 3.3 shows how idealized GLA’ sdiffersfrom the GLA’ s actually used.



35

Idedlized GLA Implementation GLA
00 | O—~0—"~0
00
—(O——0O

Figure 3.3 Idealized GLA versus Implementation GLA

In addition, because grammars are normally $<-augmented before analysis (S’ — S$%), areflexive
$-transition to the GLA accept state of the start symbol such asthat in Figure 3.4 is constructed.

§$

Figure 3.4 $X-augmentation of GLA’s

Section 4.9 describes lookahead operations in more detail and Section 4.8 describes the
representation of lookahead information itself. The next section describes how parsers may be
represented using automata with heterogeneous states.

3.2 Heterogeneous Automata in Deterministic Parsing

The previous section described how grammars may be represented in such a way that looka-
head computations are conveniently defined as GLA walks; it did not discuss how parsers could
be built from the grammars. While most parsers described in the literature employ parsers with
one type of parser state, this section describes how parsers may be constructed using automata
with different state types.

Parsers with large lookahead buffers that employ homogeneous automata (automata with
exactly one type of state) are impractical; they are unable to take advantage of the fact that not all
states require lookahead and, of the states that do, most require only a single token. To facilitate
the construction of parsers as championed by this thesis, a mechanism, by which automata with
many different state types can be described, is hecessary — mere tables are insufficient.



36

A heterogeneous automaton is an automaton for which each state may perform a different
function; specifically, we are interested in states that make transitions by examining different
amounts of lookahead and by examining lookahead in different ways. The class of heterogeneous
automata includes recursive-descent parsers, heterogeneous LL-machines, and heterogeneous
LR-machines. Recursive-descent parserstypically have a function for each grammar nonterminal
and may naturaly perform different operations at each decision point. In this section, we
describe heterogeneous LL and LR machines, which are exactly the same except for the actions
induced by lookahead examinations, Chapters 5 and 6 describe recursive-descent parsersin more
detail. Heterogeneous automaton states consist of a state label, a set of lookahead
inspection/action pairs, and a set of state actions; otherwise, these machines have the normal set
of terminal and vocabulary symbols, transition mapping, collection of states, accept states, and
start state. No implicit ordering for the lookahead inspections is specified, but the state actions
are executed only if none of the lookahead actions are executed and in the order specified. For
example, consider the template shown in Figure 3.5.

upon f1(ty, ..., T) perform lookahead_action;
upon f,(ty, ..., T¢) perform lookahead action,
upon f (T4, ..., T¢) perform lookahead_action,,
state action;
state_action,

state_action,

Figure 3.5 Heterogeneous Automaton Template

The lookahead inspection functions, f;'s, have no implicit order so that no restrictions are placed
upon the mapping from lookahead to transition action; they may also be functions of the current
parser state. The state_action;’s are not restricted in any manner (they may have local, global or
no effect) and are executed in the order specified.

Constructing a parser with heterogeneous states is essentialy the same as for normal
recursive-descent, LL-machines or LR-machines. The sole difference lies in the focus of this
thesis — the realization of state transition functions for states that require lookahead. Transitions
can also occur without the need for lookahead. For example, LR-machines can change state
based upon the current stack-top symbol and LL-machines can change state without examining
anything (assuming valid input). Transitions that do not examine lookahead are simply state
actions.



37

The remainder of this section presents two examples that illustrate the construction of
heterogeneous LL- and LR-machines; the examples use different grammars because LL and LR
parsers generally need lookahead in different states. We begin with the implementation of an
LL-machine for Grammar G3.2.

A-B
A-C
B - ab G3.2
B - cd
C - ae

Grammar 3.2 has two nonterminals with more than one aternative production and, hence, two
decision states exist in the LL-machine. Predicting aternatives of A requires a lookahead depth
of two, predicting alternatives of B requires a lookahead depth of one and C has no lookahead
requirements as there is only one aternative. The normal LL (2)-machine, akin to [ASU86], is
depicted in 3.6.

S——-O——-®——-0——0

c@d

& 2=® -0

Figure 3.6 LL (2)-machine for Grammar 3.2

We have augmented the notation of [ASU86] to include the lookahead components on transition
arcs; i.e. €|v where v is the lookahead component. The diagrams in [ASU86] are LL (1) and,
hence, the lookahead components are obvious whereas, here for k>1 they are not. Using a
heterogeneous state mechanism, states Sy, Sg, and S could be represented by the statesin Figure
3.7.



38

upon (t4, 1) O {(a,b), (c,d)} call S;
upon (11, To) = (a,e) call S,

X
upon T4 = a consume, goto S
upon T4 = C consume, goto S,

<

consume, goto Sg

Figure 3.7 Heterogeneous Automaton States Sy, S, and S

States S5 and S would be unnecessarily complex if a homogeneous automaton were used
because each state is as complex as the state with the most complicated decision. Note that, since
nonterminal C has no decision to make, it may merge all states into one of the form depicted in
Figure 3.8 (assuming valid input). State Sy can be reduced so that it only examines the second
token of lookahead, T,, because it uniquely predicts which production to apply; the first token of
lookahead has no routing information since a is a common prefix.

X

consume 2 symbols
return

Figure 3.8 Compression of States for Nonterminal C

Just as LL parsers can be described using heterogeneous automata, LR parsers can be
expressed using the heterogeneous automata state template. Consider Grammar G3.3, which
better illustrates LR’ s different state requirements.



39

S . A$S
A - Bab
A - ac G3.3
B -
So:
2
S - eAS ’$$ Sl: Sz:
A - eBab, $% B a
A - Beab, A - Baeb,
A - eac, $$ * * * At
B_e, ab

Figure 3.9 Partial LR (2)-machine for Grammar 3.3

A portion of the LR(2)-machine is shown in Figure 3.9. State Sy requires a lookahead
depth of two to resolve the shift/reduce conflict between A - ac and B —. However, states S;
and S, do not need to examine lookahead at all to effect a state switch — the transitions are a
function of the current state. Using the heterogeneous automata state templates, this partial
LR (2)-machine can be efficiently encoded as shown in Figure 3.10.



40

So:

upon (14, Tp) =(a,c) shift a, goto §

upon (T4, 1) =(a,b) reduce B —
upon reduction of B goto S;
upon reduction of Agoto §

S

shift a, goto S,

So:

shift b, goto S

Figure 3.10 Heterogeneous Automaton States Sy, S, and S,

where § and § go to portions of the machine not shown. As before, state compression can be
performed; i.e. states S; and S, could be merged easily into a single state that shifts ab and goes
to S.. LR parser compression has been studied in detail (e.g. [AhU73, DeM75, LaL76]), but this
very effective type of compression is uncommon because it is possible only when heterogeneous
states are considered.

Heterogeneous automata for both LL and LR parsers have been illustrated in this section. A
striking similarity exists between the machines for the two parsing strategies, which emphasizes
the fact that the states and the number of states may differ, but lookahead decisions are simply
mathematical relations. The next section explores this notion in detail.

3.3 Parsing Decisions

Parser construction is composed of three tasks: First, lookahead information must be com-
puted. Second, parser decision states must be built using this lookahead information. Thirdly,
the individual lookahead decision states are examined to ensure determinism. Convention wis-
dom has it that the tasks are impractical due to exponentially large lookahead requirements.
While the worst-case will always be exponential, the common case can be reduced to near-linear
performance; Section 3.7.1 describes a strictly linear decision type called C*(k) that can often be
used as an approximation to full C (k).



41

This section characterizes when parsers need to examine lookahead and then provides a
mathematical relation, called induces, that abstracts parser decision state transitions and isolates
the required lookahead information from the details of implementing a mapping. In doing so, we
arguethat LL (k) and LR (k) parsers are identical from alookahead decision point of view.

3.3.1 C1(k) Decisions

C (k) parser decision states typically have been considered a smple matter — k-tuples are
examined and the appropriate parser action is induced. The lookahead information being exam-
ined is exponentialy large in the worst case and, thus, these decision states were explored from a
theoretical point of view. The work on LR-Regular languages [CuC73, BeS86] alows
unbounded regular lookahead languages instead of normal k-bounded regular languages to induce
parser action. But, these lookahead languages are recognized by DFA that are also exponentially
large. Just as the lookahead information for SLR(K) parsers is an inaccurate superset of the
LALR(K) information (SLR(Kk) parsers use context-independent sets and LALR (k) use context-
dependent sets [SIS90]), another type of covering approximation to lookahead information can be
defined that simplifies lookahead computation and reduces the size of decisions states to a linear
function of k.

We introduce C*(k) decisions as decisions that examine at most k future terminals and use
only 1-tuple (set) comparisons to induce parser actions. The lookahead information for C(k)
can then be compressed to k sets of terminals, O(|T | % k), rather than the normal O(|T |") k-
tuples. The i set in the C(k) information is the collection of all terminals visible at depth i
starting from a grammar position where the definition of *‘visible'’’ depends on the parsing stra-
tegy; C1(1) is equivalent to C (1) because C(1) is also the set of terminals that can be matched
next — one terminal in the future. The definition of this approximate lookahead can be taken
advantage of when computing lookahead information and when constructing parser decision
states. Computing C*(k) lookahead information is not forced into exponentiality by the size of
the information as is computing C (k) information. In the same sense, decision states are no
longer exponentially large because the approximate lookahead information is linear in size.

The C(k) space reduction comes at the cost of inaccuracy. For example, the two looka-
head tuples (a,b) and (c,d) that induce some parser action have C1(2) lookahead set sequence
{a,c},{b,d}. The C1(2) decision strategy, however, would map any tuple with {a,c} at looka-
head depth one and {b,d} at lookahead depth two to that parser action — 2-tuples (a,b), (a,d),
(c,b), and (c,d).

In general, all of the LL (k) and LR (k) variants can compute the approximate lookahead as a
quick first attempt to resolve C(0) nondeterminisms. Unfortunately, full LL (k) and LR (k) cannot
use this approximate lookahead during grammar analysis, but they may arrive at the same infor-
mation (the hard way) by compressing the full lookahead information. Any decision state may



42

take advantage of the C*(k) information; Chapter 5 examines SLL*(k) and Chapter 7 describes
how the other deterministic strategies may employ C*(k) information and decision templates.

When C*(k) decisions cannot be used in place of the full C(k) decisions (which are
exponentia in k), it isimportant to reduce k to the minimum possible. The next section describes
the lookahead depths required for parser decisions with S_L (k) used as avehicle for exploration.

3.3.2 9L (k) Lookahead Characteristics

Most parser transitions require no lookahead — state information alone is sufficient to
determine a course of action. Even when lookahead is required to distinguish between state-
transition arcs, usually, only a single lookahead terminal is required. It is precisely this fact that
brings LL (k)- and LR(k)-based parsers for k>1 into the realm of practicality. Due to the
exponentia state explosion for full LL (k) and LR (k), we focus on the linearly-sized variants. In
particular, we choose 9L (k) parsers as a practical, easy to construct alternative that demon-
strates out approach to parsing with large lookahead buffers.

This section presents statistics about the nature of SLL (k) parsing decisions that involve
lookahead. 22 sample grammars, submitted by PCCTS [PDC92] users, are analyzed for looka-
head requirements; see the Appendix for a description of the grammars. There are nondeter-
ministic decisions in most of the grammars, although these decisions are usualy resolved
correctly during parser construction; e.g., the dangling-else-clause construct is non-LL (k), but is
handled correctly by matching the ‘‘else’’ as soon as possible.

Table 3.1 demonstrates that the vast majority of SLL (k) decisions, 98.57%, are S_L (0) or
S L(1). A quick calculation indicates that, of the decisions that require lookahead, 98.81%
regquire only a single lookahead symbol.



Table 3.1 Lookahead Requirements for 22 Sample Grammars

43

granmar | |T| | |N| | decisions lookahead n<3 non-
0 1 > 3 SL(3)
ST 8T | 113 3T | 198(63.6%) | 107(344%) | 30099%) | 0O 3
2 66 | 52 150 98(65.3%) | 52(34.6%) | O 0 0
s3 52 | 89 230 | 141(613%) | 87(37.8%) | O 0 2
4 91 | 139 336 | 197(58.6%) | 132(39.2%) | 4(11%) | 0 3
S5 69 | 119 338 | 219(64.7%) | 118(34.9%) | O 0 1
6 24 | 33 83 50(60.2%) | 32(385%) | O 0 1
s7 % | 44 93 49(52.6%) | 35(37.6%) | O 0 10
8 2% | 30 62 32(51.6%) | 29(46.7%) | O 0 2
9 40 | 22 99 TH77.7%) | 21(212%) | O 0 1
S10 7 7 11 4(36.3%) | 6(545%) | 0 0 4
s11 12| 13 20 7(35.0%) | 13(65.0%) | O 0 0
s12 8 | 12 21 9(42.8%) | 12(57.1%) | 0 0 0
S13 14| 12 26 14(53.8%) | 12(46.1%) | O 0 0
S14 71 | 106 264 | 158(59.8%) | 105(39.7%) | O 0 1
SI5 | 182 | 371 | 1063 | 692(65.1%) | 356(33.4%) | 7(0.6%) | 1(0.1%) 7
S16 24 | 34 98 64(65.3%) | 30(30.6%) | 1(10%) | O 3
S17 19 | 27 63 36(57.1%) | 22(34.9%) | O 0 6
s18 67 | o1 232 | 141(60.7%) | 89(38.3%) | O 0 2
S19 38| 9% 25 | 129(57.3%) | 95(42.2%) | 1(0.4%) | O 0
S20 64 | 119 214 95(44.3%) | 118(55.1%) | O 0 1
21 46 | 84 225 | 141(62.6%) | 82(36.4%) | 2(0.8%) | 0 0
S22 15 | 31 54 23(425%) | 31(57.4%) | O 0 0

Table 3.2 averages the data found in Table 3.1. The average grammar has a vocabulary of
about 50 terminals, 75 nonterminals, and contains one decision requiring a lookahead depth
greater than one.

Table 3.2 Average Lookahead Requirements for 22 Sample Grammars

grammar | |T| IN| | decisions ) Iolo kaheadns.’j; 3 non-SLL (3)
Average | 47.3 | 747 191.7 117(61%) | 72(37.5%) | .8(.4%) | .05(.02%) 1.8(.9%)

The empirical results of Tables 3.1 and 3.2 suggest that SLL (k) grammars are mostly
9L (1). Because lookahead trees are simple, linearly sized sets of terminals when k=1 and
because SLL (k) parsers are linearly sized in |G |, S.L (K) appears to be nearly a linear problem.
Unfortunately, the few decisions that require k>1 lookahead incur the unavoidable exponential
cost, O(| T [), of computing and storing lookahead sets; more statistics are provided in Section

6.17.1.

Parser transitions generally can be made without lookahead or with a single terminal of loo-
kahead. When more than a single terminal of lookahead is required, it is often the case that a
linear approximation to the full lookahead computation can be used. This section provided
empirical evidence that parsing with k>1 terminals of lookahead is practical because most




44

decisions, 98.57%, are SLL (0) or SLL (1). The complexity of the remainder of the decisions are
controlled by using the linear approximation SLL(k) as often as possible. The next section
examines when LOOK operations are required during grammar analysis; i.e. which parser states
must make lookahead decisions.

3.3.3 When Parsers Need Lookahead

LL parsers need to examine lookahead only at nonterminal decision points (on the left
edge); hence, they make at most [N | m-ary decisions where |N | is the number of nonterminals
and mis the number of productions for a particular nonterminal. LR-based parsers examine loo-
kahead in any state that has an LR (0) shift/reduce or reduce/reduce conflict. LL (k) parsers’ vora
cious appetite for lookahead arises from its need to predict which production to apply before the
entire production has been scanned; LR (k) parsers see an entire production before deciding. In
this section, we explore when parsers make lookahead decisions via an example grammar and its
associated LL (3) and LR (1) machines.

Consider Grammar 3.4. The LL(3) machine is shown in Figure 3.11 and the LR(1)
machine is shown in Figure 3.12 with the lookahead component missing asit is dways $.

S o A$$
A - abc
A _ ab G3.4
Ao a

Figure 3.11 LL (3)-Machine for Grammar G3.4



45

S . e A$$ p-

A—»a.bc
A _ eabc a A _ aeb b A - abec C A _ abc

— [ J — LJ

A—».a.b A-»&bo

A—»a.
A - ea

A
$

S—)A.$ S—>A$.

Figure 3.12 LR (1)-Machine for Grammar G3.4

The LL (3) machine makes a single decision to parse any sentence — it examines (1;,Tp, T3) once
on the left edge of A, making atrinary prediction. In contrast, the LR(1) machine, which makes
decisions on the right edge, examines 1, once for each reduction of the productions of A. The
LL (3) machine always makes exactly three token inspections to predict a production, whereas the
LR (1) parser makes a single token inspection at each transition in the reduction of A.

In general, LL (k) parsers make decisions of the form:

A—).al
A-»O(Xz

A - eqp
wherea; OV". LR(k) parsers examine lookahead terminals whenever an item pairs of the form:

A—>a.B
B—)G.

wherea,B O V", or

C—>G0
D—»a.

are in the core of a state, where A and B are not necessarily different. Only states with at |east
one item of the form ‘A - o ¢’ are candidates for lookahead decisions. There is no such thing
as a shift/shift conflict because the parser will always shift the current symbol from the input to
the symbol stack until it finds a handle.

The discussion of LL (k) and LR(k) presented in this section assumes that heterogeneous
automata are constructed in direct contrast to most parser generators; i.e. the left-edge LL (3) loo-
kahead decision of A does not force all states in the parser to examine lookahead. Clearly, if only
one arc emanates from a state, any prediction decision is obvious. This simple optimization



46

cannot be done using homogeneous automata as all states either examine lookahead or they do
not.

Although LL (k) and LR(Kk) parsers have different states, examine lookahead at different
times, compute lookahead from different grammar positions, and maintain different state infor-
mation, lookahead states are virtually indistinguishable — both parsers decision states map 1oo-
kahead sequences to parser actions and state transitions. The next section abstracts this notion to
amathematical relation called induces.

3.3.4 How Parsers Use L ookahead

If one considers the mechanism by which parsers examine lookahead, as opposed to in
which state and when during the parse lookahead is examined, the difference between LL and LR
vanishes. Formally, any lookahead decision is a relation induces from T* O TX to a finite set of
parser actions; e.g., ‘‘predict A - o'’ (LL) or ‘‘reduce A - a’’ (LR). In Figure 3.11, (a,b,$)
induces ‘‘predict A — ab’’ and, in state p of Figure 3.12, $induces‘‘reduce A - ab’’. Regard-
less of the range of induces (the set of possible parser actions), examining lookahead remains a
simple relation on a subset of T*. For example, consider the LL (3) induces relation in Table 3.3
for state A of Figure 3.11.

Table 3.3 LL (3) induces Relation for State A of Figure 3.11

Lookahead (T1,T,,13) O T3 Action
(a,b,c) predict A - abc
(a,b, %) predict A _ ab
@a$%$9) predict A = a

The lookahead 3-tuple on the left induces the parser actions listed on the right. Clearly, an
induces relation, and hence a decision state, is deterministic when no lookahead induces more
than one action — e.g., no k-tuple predicts more than one production (LL) and no k-tuple induces
ashift and areduce or induces areduce of more than one production.

It is convenient to give each action for a given decision a unique number such that the range
of induces is a subset of the natural numbers; inducesthen maps T’ - {1, 2, ..., m}. Inthe case
of LL, misthe number of productions for a nonterminal. For LR, mis the number of conflicting
LR(0) items in a state requiring lookahead. In this manner, a generic C (k) parser state can be
manipulated without concern for the parser strategy.



47

This abstract lookahead mapping can be viewed as a k-dimensional vector plot. For exam-
ple, consider the induces mapping in Table 3.4, which is plotted in Figure 3.13.

Table 3.4 Example C (2) induces Relation

Lookahead (11,T,) O T? | Action 0 {1..3}
(c,b) 1
(ae) 1
(d,c) 2
(c,d) 2
(f,c) 2
() 3
e 1
d- 2
To C 2 2
b 1
a— 3
| | | | | |
a b c d e f
T

Figure 3.13 Example induces Relation Plot

Constructing a parser lookahead decision amounts to finding an efficient implementation of
induces — generating a discriminant function that deterministically classifies a feature vector to
one of m classes (using Al terminology). If alookahead k-tuple induces more than one action,
the underlying grammar is not deterministic; graphically, if any two vectors that map to different
actions, have coincidental endpoints, no discriminant function can be found.

Observe that, when the lookahead vectors in Figure 3.13 are projected onto the T, axis, a
very efficient discriminant function may be found; precisely, a simple set operation on 1,. This



48

operation is analogous to simplifying the relation to that of Table 3.5. According to Section
3.7.1, we may denote this type of decision as C*(2) because a lookahead depth of two is required
and a 1-tuple (set) comparison is the largest atomic operation; Chapter 5 describes these decisions
in more detail for SLL*(k).

Table 3.5 LL1(2) induces Relation

Lookahead 1, OT | ActionO{1..3}

{b,€} 1
{c,d} 2
{a} 3

This chapter provided a new perspective from which to view LL (k) and LR (k) parser con-
struction. We developed convenient methods for representing grammars, describing parsers with
heterogeneous states, and for viewing parsing decisions. Section 3.5 represented grammars as a
collection of NFA, denoted GLA'’s, that are used to define lookahead computations in the next
Chapter. Section 3.6 illustrated how parsers with states of varying complexity could be
represented. In Section 3.7, we introduced linear approximate C(k) decisions, characterized
when parsers|ook ahead, and abstracted the notion of a parsing decision to the induces relation.

The 9L (k) lookahead requirements for 22 sample grammars were empiricaly studied in
Section 3.7.2. We found that 98.57% of all SLL (k) decisions were correctly mapped using k [
{0,1} and that 98.81% of all decisions that required |ookahead could be mapped with asingle ter-
minal of lookahead. This empirical data supports our claim that LL (k) parsers are practical
because when, k 0 {0,1}, |T|¥ is not an exponentia; recall that parsers with heterogeneous
states are required to take advantage of the varying lookahead requirements of decision states.
One can extrapolate that LR (K)-based parsers are practical aswell because 9L (k) is weaker than
LL (k) and LR(K) is stronger than LL (k) — LR (k) must surely use less |ookahead than SLL (k).

We abstracted parsing decisions to a mathematical relation called induces that summarizes
a decision state mapping of lookahead sequences to parser action. The induces relation allows us
to discuss deterministic parsers generically as they are al identical from a lookahead decision
state point of view. In addition, induces alows us to isolate the computation of lookahead from
the implementation of the mapping itself.

The following chapter examines parser lookahead, as derived from the GLA’s described in
this chapter, and how lookahead may be represented and computed. The cost of computing loo-
kahead is also explored in depth.



49

CHAPTER 4 PARSER LOOKAHEAD

When state information aone is insufficient to determine parser action, lookahead informa-
tion is used to induce the correct state change. Traditionally, lookahead information is computed,
stored, and tested as sets of k-tuples where k is the lookahead depth. As discussed in this thesis,
however, lookahead terminals must be considered as individual entities rather than as k-tuples.
This necessitates a nontrivial change of perspective with regard to parser construction and gram-
mar analysis. Pursuant to this, the previous chapter described how parsers with states of varying
complexity could be described, how grammars could be stored in an advantageous manner with
respect to lookahead computation, and how decision states could be abstracted to a mathematical
relation called induces that maps lookahead symbols to parser actions; this chapter delves into
the definition and representation of parser |ookahead.

Although the various deterministic parsing strategies maintain different state information
and use different lookahead strings, canonical lookahead operations and lookahead string
representations can be very similar between strategies. The GLA grammar representation
described in the previous chapter is especially convenient for computing lookahead sets.
Specifically, lookahead computations may all be described as constrained walks of the collection
of NFA’sinthe GLA; therefore, it is reasonable to view lookahead as DFA’ s that accept the regu-
lar language computed by the lookahead operations, which we store as child-sibling trees. We
introduce LOOK(p) as the lookahead set for grammar position or GLA state p. Similarly, we
define LOOK(p) as the set of terminals that can be matched k terminals in the future; we term
this the *‘linear approximation’” to LOOK,. LOOK} is advantageous because it has linear time
and space complexity and can be used to reduce the complexity of most lookahead decision
states. We denote decisions that use LOOK-type information C*(k); these decisions look at
most k terminals into the future and examine only 1-tuples (sets).

In this section, we describe efficient means for representing lookahead information (Section
4.8), define lookahead operations (Section 4.9), and provide a detailed analysis of the worst-case
behavior for computing lookahead (Section 4.10).



50
4.1 Representation

Lookahead information is normally discussed and stored as sets of k-tuples. Unfortunately,
real programs that compute lookahead sequences cannot easily manipulate information in this
form. This section introduces two alternative, equivalent structures for storing, manipulating, and
examining lookahead information: deterministic finite automata (DFA’s) and child-sibling trees.
The DFA representation is appropriate because of its relationship to the GLA representation of a
grammar. We shall view lookahead in this way, but will actually implement lookahead algo-
rithms using child-sibling trees. Here, we show the relationship between lookahead k-tuples, 100-
kahead DFA, and child-sibling trees.

Grammars are efficiently and conveniently represented by GLA because lookahead k-
sequences for a grammar position clearly correspond to the sequence of non-€ edges along the
walks of length k starting from the associated GLA state. Also, DFA’s are more appropriate than
sets of k-tuples for describing lookahead because of the obvious relationship between the regular
lookahead languages and DFA'’s.

Consider the lookahead tuple (a,b); it can be trivially represented in DFA form as
a _/ b
O——=0O——0
A set of lookahead 2-tuples such as{(a,b),(a,c),(a,d)} can then be represented as
O—=C——+0

where the common prefix, a, has been factored, thereby reducing space requirements for the loo-
kahead information. We will sometimes use the notation

O a \O b,c,d\@

as a short form. Note that lookahead DFA’s are acyclic by definition as they accept a language
that is adelineation of k-strings; consequently, all paths are of length k.

When we need to discuss lookahead sets that induce different parser actions, |ookahead
DFA accept states will be annotated with an action number; e.g., consider Grammar G4.1, which
isLL (2).




51

A - abc
A - Be
B - ac
B - ad

G4.1

The language described by this grammar is trivialy {abc,ace,ade}. The 2-tuple that predicts
A - abc is (a,b) and the set of 2-tuples that predicts A - Beis {(a,c), (a,d)}. In DFA form,
this can be encoded as

Oa\/‘\b\@l

2

where the subscript of i implies that that DFA accept-state predicts production i. In general, the
subscript indicates which parser action to induce.

Although it is convenient to view lookahead sets as DFA’s, algorithms to compute looka-
head can more easily manipulate child-sibling trees. When a tree is reasonably simple, we will
use the lisp notation: (p oy a5 ... a,) where p is the root of the tree and the a; are the siblings,
which can themselves be trees. However, this notation becomes obtuse as the size of the tree
increases, therefore, trees will generally be depicted graphically. To represent k-tuples in graphi-
cal tree form, one performs the simple transformation in Figure 4.1.



52

Creat bt f the form: (A
@y, ap, .., 3) reate a subtree of the form: (a1 (as ( ... (ax-1 &))))
aj

1
ap
1

!
ay

(@10, (01,): o (€10} Create atree of theform: (a; ...) (b1 ...) ... (C1 ...)

i ! \

Figure 4.1 Child-Sibling Tree Representation of k-tuple Set

Using this transformation, the 2-tuple sets above, {(a,b)} and {(a,c), (a,d)}, can be represented
as

U(—

for predicting production one and

O < 9
o < O

for predicting production two where all terminal symbols at the same lookahead depth are at the
same horizontal level. As before with the DFA representation, the common left-prefix in the loo-
kahead information can be factored out:

c - d

The paralel between the DFA representation and the tree representation can be observed by
rotating and flipping a tree from its normal orientation such as in Figure 4.2. Trees and acyclic
DFA’sare essentially duals of each other, in the graph theory sense, where the tree nodes become
DFA transition labels and vice versa.



53

Rotated Tree Lookahead DFA
a-Dhboc a /‘\ b m c
! Q N @
d - e
e

Figure 4.2 Tree and DFA Duality Example for {(a,b,c), (a,d,e)}

In the next section, we define lookahead computations and use the child-sibling tree
lookahead-representation to describe these computations as GLA to set and GLA to child-sibling
tree conversions.

4.2 Operations

As discussed in the previous section, we compute lookahead information by traversing
GLA’s. We define LOOK( to be the set of lookahead k-strings for a particular grammar position
(GLA dtate); i.e. the set of strings that are validly recognizable, according to the parsing method,
from a position by consuming exactly k terminal symbols. — set of terminal symbols that can be
validly recognized, according to the parsing strategy, exactly k terminalsin the **future’’. Conse-
guently, this operation maintains a single set of terminals and has linear time and space complex-
ity (using the correct implementation). LOOK{. is called the “‘linear approximation’’ as it can be
used to approximate LOOK with alinear, covering set of k terminal sets. We define LOOK and
LOOK{ in terms of FIRST and FOLLOW operations and in terms of GLA traversals for both

SLL (K)/SLR (k) and LL (K)/LR (k).

4.2.1 Full Lookahead Operations

Parser lookahead information can be defined in terms of FIRST, and FOLLOW,, which are
insensitive to the parsing method. However, for the various parsing methods, it is convenient to
have one operation that reflects the appropriate sequence of FIRST, and FOLLOW,, operations
necessary to compute lookahead strings for any grammar position. In this section, we define such
an operation for SLL (K)/SLR(k) and LL (k)/LR(k) denoted LOOK,. LOOK is aso defined in
terms of GLA traversalsfor SLL (K)/SLR(K).

The set of SLL (k)/SLR (k) lookahead strings for aposition, A - o ef3is



LOOKy(A — o ) = FIRST,(B FOLLOW(A))

and, for LL (K)/LR(K),

LOOK(A — o o) = FIRST (B Yy) where S 0 jry rm WAY

withw OT ,yOV" for LL(k) andw OV",yOT" for LR(k); LR(K) uses O ;, and LL (k) uses
O im.

The definition of LOOK,(p), for some grammar position p, can be described in terms of
specific walks beginning at the node in the GLA created for position p. Figure 4.3 provides a set
of recurrences that describe LOOK| trees.



GLA Fragment

LOOK(p) Operation

C a C a k=1

< a
l k>1
| LOOK-1(p —edge,)

C € C LOOK(p —edgeq)

a - LOOK(p - edge,)

!
< LOOKk-l(p — edgel)

LOOKk_l(p - edgel) - LOOKk(p - edgez)

k=1

k>1

LOOK(p —edge;) — LOOK(p — edge,)

Figure 4.3 9L (k) LOOK, Operations on GLA

55



56

where only two edges, p - edge; and p - edge,, emanate from a GLA node; p - edge; is the
edge pointing from left to right and p - edge, is the edge pointing downward.

Algorithms for LOOK| are provided in Section 6.16; LOOK, is used by parser construction
algorithms in Chapter 6. Unfortunately, the use of LOOK( is expensive due to the exponential
nature of lookahead information. In an effort to reduce the need for LOOK operations, we define
alinear, covering approximation called LOOK that can often be used by in its place.

4.2.2 Linear, Approximate, Lookahead Operations

An attempt is made to resolve parser nondeterminisms with as ssmple a lookahead decision
as possible. Most decisions can be made with no lookahead or with a single termina of looka-
head. Of the decisions that require more than one lookahead terminal, it is often the case that ter-
minals at certain depths, rather than terminal sequences, can be used to distinguish between
parser transitions. Storing the lookahead k-tuples for a parser decision state has exponential com-
plexity whereas storing the terminals that can appear at the various depths requires only k sets of
maximum size |T |. We define parsers that make only termina set (1-tuple) comparisons and
look at most k terminals into the future as C(k). The corresponding lookahead computation is
denoted LOOKGE.

Denote the set of SLL1(k)/SLR*(k) lookahead strings for aposition, A - a e as
LOOKE(A — o eP) = FIRSTE(B FOLLOW(A))
and, for LLY(k)/LR*(k),
LOOKE(A — o eB) =FIRSTE(BY) where S T |, m WAY

Again, LR (k) would use O , and LL (k) would use O |,
The normal lookahead operations are modified in the following way:

FIRSTE(@)={a | a 0" wandw =xay forx O Tk}

and



57

FOLLOWE(A) ={ FIRSTE(B) | ST~ aAB}

wherea 0T,y OV',anda, BOV". FIRST; is the end-of-file marker, $, when aw of the form
xay cannot be found.

As with LOOK,, LOOKG is easily defined as a collection of GLA traversals. Figure 4.4
gives a set of recurrences that describe LOOK{ sets.



GLA Fragment

LOOKE(p) Operation

®——=0

a k=1

LOOK¢_; (p — edge;) k>1

®——0

LOOK(p - edge;)

a [] LOOK(p - edge,)
LOOK k4 (p —edge;) [] LOOKE(p — edge,)

k=1
k>1

LOOKk(p —edge;) [] LOOK(p — edge,)

Figure 4.4 SLL(k) LOOK} Operations on GLA

58



59

where only two edges, p - edge; and p - edge,, emanate from a GLA node; p - edge; is the
edge pointing from left to right and p - edge, is the edge pointing downward.

The reader may argue that it is more efficient to have LOOKE compute sets at all depths up
to k rather than just for depth k. However, because we expect most decisions to require a single
token of lookahead, computing all sets up to depth k unnecessarily complicates the definition,
algorithm and implementation.

LOOKG is alinear approximation to LOOK, that is often sufficient to induce correct parser
action. Itstwo advantages are that it reduces grammar analysis to a potentially linear complexity
and parser decision states can be stored in space O (| T | x k) rather than O (| T |¥). Parsing with
these compressed |ookahead setsis explored in detail in Chapter 5.

The recurrencesin Figures 4.4 and 4.3 are simple, but do not take into account the fact that
alookahead operation may arrive back at a previously-visited node. Cycles are not too much of a
problem unless the results of lookahead computations need to be saved. Storing incomplete
information can be difficult and, therefore, in the next section, we study lookahead computation
cycles, which cause early termination of computations.

4.2.3 Lookahead Computation Cycles

A context-free language cannot be represented exactly with a GLA, but any finite set of sub-
strings of the language generated by a CFG is regular and, hence, can be described by a DFA.
The bounded lookahead information for any position in the grammar is such a language; there-
fore, it is reasonable to represent a grammar as a large, intertwined, collection of NFA’s. Com-
puting lookahead information is then a simple matter of performing a constrained traversal of the
GLA; the computations are similar to NFA REACH and e-CLOSURE operations. From a graph
theory viewpoint, one is recording all walks of length k beginning at a particular GLA state,
where g-edges count as length zero. When the lookahead |anguages of a grammar are represented
by a GLA, FIRST, and FOLLOW operations become the same computation except that FIRSTy
begins at nonterminal entry positions and FOLLOW, begins at nonterminal exit positions (recall
that nonterminal exit states point to all states that following references that nonterminal).

Lookahead information is straightforward to compute for many grammars because there are
no GLA cycles. However, If a LOOK, or LOOK} computation were to reach a state that is
currently a member of a walk in progress (for the same k), a cycle would have occurred. We
define a cycle as any lookahead computation recurrence of the form

LOOK,,  f (LOOK,)



60

for some n<k and some computation f. An agorithm must not pursue this type of redundant
computation in order to terminate. This section describes the difficulties and semantics behind
cycles in LOOK computations. We begin by describing what computation cycles mean for the
various parsing strategies and then present FIRST, and FOLLOW,, cycle examples.

Cycle detection is important from a computation caching standpoint because early termina-
tion of a lookahead computation due to a cycle yields incomplete information that must not be
cached as complete. Therefore, since our LOOK algorithms will cache results computed for both
nonterminal entry and exit states, we must consider cycles discovered from both state types.
Note that inefficient algorithms that do not save the results of previous computations only need to
worry about cycles causing nontermination of the algorithm.

Inthe SLL (K)/LL (K) FIRST, sense, cycles are direct or indirect left-recursion and render the
grammar non-SLL (k)/LL (k). With regards to LR(k), cycles cannot occur as lookahead opera-
tions are confined to string append and FIRST operations; SLR (k) analysis runs the same risk as
LL (k) in terms of nontermination, but LR-based parsers do not consider left recursion an error.

4.2.3.1 Example FIRST, Cycle

Cycles in the FIRST, sense arise from recursive grammar productions such as those in
Grammar G4.2:
A - aB
A-B
B-A
B-b

The GLA for Grammar G4.2 is shown in Figure 4.5.

G4.2



61

Figure 4.5 Grammar With FIRST, Cycle

LOOK,(A - eaB) discoversacycle:

a
LOOK (A - eaB) = !
LOOK (B — 8A) — LOOK;(B — eb)

LOOK (B — eA)=LOOK (A — eaB) — LOOK;(A - eB)
LOOK (A — eB)=LOOK (B - eA) — LOOK,(B — eb)

LOOK (B — @A) requires itself to complete the computation. This cycle indicates that Gram-
mar G4.2 is left recursive. Notice that LOOK,(B - eaB) requires LOOK (B - eaB), but
because LOOK , and LOOK ; are different computations entirely, this does not constitute a cycle.
A computation at depth n can never attempt a computation at depth n+1 because LOOK is a
monotonically decreasing function of k.

One may view cycles more clearly in a computation dependence graph such as the one dep-
icted for Grammar G4.2 in Figure 4.6.

LOOK »(e A) LOOK (e A)

LOOK ,(e B) LOOK 1 (e B)

Figure 4.6 Partial Computation Dependence Graph for Grammar G4.2



62

where an edge from computation LOOK (e A) to LOOK(eB) indicates that LOOK (e A)
depends on LOOK 4 (e B) to complete its computation and LOOK (e A) indicates the combined
LOOK| for all productions of nonterminal A. Therefore, it is always the case that dependence
arcs move vertically, move from left to right, or loop on a state; dependence arcs never point
from right to left.

4.2.3.2 Example FOLLOW Cycle

Cycles found during any FOLLOW,-type LOOK operation are not a problem from a looka
head definition point of view because a cycle in this case means simply that that computation
result has aready been included in the set of possible k-strings.

LOOK computations may continue past the GLA accept state of a nonterminal, thus, begin-
ning a FOLLOW operation. If a LOOK,, operation on some GLA state eventually returns to that
same state and requires a LOOK operation for the same n, LOOK,, has detected a cycle; that
branch of the computation must terminate. Grammar G4.3 contains a cycle in the FOLLOW
sense.

A - a,Ba

A - a,B

B - azC G4.3
C - asA

C -

Computing LOOK {(C — a3C e) requires LOOK(C - a3C) to complete. LOOK(C - azC)
is amember of a computation cycle and any member of this cycle has the same LOOK ; set; thus,
LOOK 4 for any accept state is{a}. This can be easily shown by the transitive property of assign-
ment:

LOOKl(B - azC .) = LOOKl(A - ayB .) - a
LOOK (A - a,B @) =LOOK;(C — a,Ae)
LOOK 4(C - a,Ae) = LOOK;(B - a;Ce)

By expanding any computation in the cycle, any LOOK ; computation reduces to

LOOK 4(p) =LOOK(p) — a

for some p, which issmply

LOOK (p) =a

The computation dependencies are partially depicted in Figure 4.7.



63

LOOK]_(B — a3C .)

LOOKl(C - asA 0)

Figure 4.7 Partial Computation Dependence Graph for Grammar G4.3

Lookahead computations typically request many other computations that, in turn, invoke
others. Thisis one source of lookahead computation exponentiality with the size of LOOK| loo-
kahead information being the other. The next section explores the worst-case behavior of looka-
head computations as we have defined them in this chapter.

4.3 Complexity of Lookahead Information Computation

The previous methods for C (k) grammar analysis do not explicitly compute lookahead sets;
instead, they test small pieces of the associated canonical parsers with each permutation of T —
a clearly impractica method. Our techniques have the advantage that they compute lookahead
sets directly, which are needed for parser construction, and they have better average performance,
although they are little better in worst-case complexity. This section describes the worst-case
complexity in time and space of our lookahead computation algorithms; the discussion valid for
agorithmsin Chapters 5, 6, and 7.

There are afixed number of possible |ookahead computations possible for a given grammar,
O(|G | x k), because there are k LOOK, and LOOK} operations defined for al |G | positionsin
the grammar. However, without results caching, these computations can be computed multiple
times, which renders grammar analysis exponential in nature, O (|G |¥), for one computation on
anode. To illustrate this, we present a three-dimensional computation space where each of k
planes has a copy of the grammar in GLA form with the lowest plane associated with k=1; see
Figure 4.8. Computation may proceed within one plane and may dip down into lower planes, but
may never jump up to another level (LOOK, cannot invoke LOOK| 41).



>~
R N W b

Figure 4.8 LOOKy Computation Planes

One computation at the k=1 plane has at most |G | nodes to visit and, hence, has time complex-
ity O(|G |). Each of the |G | nodesin plane k=2 could make a computation in plane k=1, yield-
ing atime complexity for the k=2 plane of O (|G |?) for one computation. In general at plane k,
there are O (|G |¥™*) operations possible at all lower levels and |G | nodes can be visited by
each computation on plane k; One computation at level k is then O(|G |¥). A grammar which
exhibits this exponentiality is Grammar G4.7.

A - aA
A - bA
A - CcA
A-d

G4.7

The left edge of each production of nonterminal A is visited for each reference to A and for each
k; each invocation of A can ‘‘fork’” 3 other invocations. Empirical results suggest that the
number of uncached LOOK{ computations on A is approximately 3¢ where the number 3 arises
from the three referencesto A. For example, LOOK1 (A) reports that exactly one LOOK ] (A) was
invoked because none of the A references were seen. LOOK3(A) reports that 4 computations
where requested: one for the initia invocation and one for each referenceto Ain A. Figure 4.9
demonstrates that the number of LOOK: computation requests is, indeed, exponential in the size
of the grammar.



65

100000 — .
10000 .
LOOK% 1000 _ . )
operations .
(logs scale) 100 '
10 — .
04 .
[ [
5 10
|lookahead depth k

Figure 4.9 Number of LOOK} Invocations for Grammar G4.7 (no caching)

When the result of every LOOK computation is cached, the number of computations per-
formed is limited to the number of computations defined on the grammar — O(|G | x k). The
time to fill al caches with information is proportional, then, to the number of defined computa-
tions. Let each operation within a node, such as a cache store, takes time proportiona to
O (Cinto), Which is the time required to do an operation on the lookahead information. The cache
removes redundant computations; the number of cache lookups is proportional to the number of
nonterminal references times the lookahead depth, or O(|G | % k), in the worst-case.

The space required to compute all LOOK computations is proportiona to the maximum
runtime stack-depth of the algorithm and the space required for the cache. The maximum number
of recursive invocations of a LOOK computation islimited to |G | x k because a node/arc may be
visited/traversed at most once per lookahead depth. The cache, on the other hand, can become
large asit is proportional to |G | X k x Cjto.

Combining this information, we observe that the time to fill the cache and to access it the
maximum number of times is proportional to O(|G | Xk x Cjo + |G | x K) and that the space
required to perform thisisO(|G | xk + |G | x k x Ciyo). For the LOOK{E computations, which
compute the single set of terminals visible at depth k, Cjx is proportional to the size of a set,
| T]. For LOOK, the lookahead is a tree composed to terminals of depth k, which yields a C
of |T|X

Summarizing, the worst-case complexity to compute all possible LOOK} operations is
O(|G | xkx |T]) in both time and space. To compute all LOOK| trees, the worst-case time
and space complexity isO (|G | xk x | T [X).

This chapter described lookahead computations, |ookahead information representation, and
lookahead computation complexity. Our approach to grammar analysis consists of simple



66

operations on GLA for computing lookahead. In Section 4.9.1, we defined LOOK,(p), the set of
lookahead strings recognizable from GLA state or grammar position p, for the various deter-
ministic parsing strategies. A similar operation, LOOK}, was defined in Section 4.9.2 that
approximates the exponential LOOK, information with compressed |ookahead information of
linear size; LOOK} has the advantage that it is linear to compute and yields a much smaller
amount of information. Specifically, LOOK} computes the set of all terminals that can be recog-
nized exactly k terminals in the future. Section 4.8 described how k-tuples are best viewed as
DFA’s due to our representation of grammars as GLA. It further illustrated that child-sibling
trees, which are duals of lookahead DFA’s, are very convenient in practice for manipulating loo-
kahead information.

The worst-case computation of lookahead information was presented as an exponential
function of k due to the size of lookahead information for a fixed grammar. The occurrence of
this worst-case behavior can be reduced, however, through the use of C(k) approximations to
the full lookahead information. LOOK} was introduced as the set of terminals that can be recog-
nized k terminals in the future; LOOK: has linear time and space complexity.

The next two chapters (5 and 6) use the observations and information representations
presented in this chapter to construct SLL (k) and SLL (k) parsersin their entirety where SLL (k)
isan SLL (k) parser which uses only C(k) decision templates. They provide algorithms to com-
pute lookahead in the SLL (k) and SLL (k) sense and to test for the SLL*(k) and SLL (k) property;
construction of these parsers is also described. Chapter 7 examines the rest of the LL (k) and
LR(k) hierarchy and generaizes C(k) to C™(k) where m is the size of the largest tuple com-
parison.



67

CHAPTER 5 SLL(k) — A LINEAR APPROXIMATION TO SLL (k)

The set of SLL (k) lookahead sequences of length k for any grammar position form a finite,
regular language with O (| T |k) sentences in the worst case. By employing the minimum neces-
sary lookahead depth, k, for each decision in an SLL (k) parser, this exponentiality can be reduced
or avoided in many cases. When a decision does require k>1, it is often sufficient to examine the
set of symbols visible at certain lookahead depths rather than complete k-sequences. In this
chapter, we define the SLL*(k) parser class whose decisions look at most k terminals into the
future and consider set membership tests (1-tuple comparisons) to be the largest atomic operation.
SLLY(K) is an approximation to SLL (k) that has linear grammar analysis and lookahead informa-
tion size characteristics. Moreover, empirical results indicate that SLL*(k) covers about 75% of
all SLL (k) decisionsfor k>1 and 99% of all SLL (k) decisions for k>1; see Section 5.11.2.

This chapter describes SLL1(k) in its entirety, from grammar analysis to parser construc-
tion. Section 5.1 introduces SLL (k) by way of an example, provides empirical studies that show
SLLY(k) to cover asignificant fraction of the SLL (k) decisions, and then formalizes the approach.
Section 5.2 examines SLL 1 (k) lookahead information and computations in detail. Using this |oo-
kahead analysis, Section 5.3 presents an algorithm to test for the SLL (k) property. The imple-
mentation of the associated induces relation (parsing decision state) is described in Section 5.4.

5.1 SLL1(k) Decisions

SLLY(K) is strictly weaker than SLL (k) for k>1 because it considers k terminal symbols
individually rather than k-sequences; lookahead space requirements are, therefore, O(|T | % k)
rather than O(|T |¥). SLL*(k) lookahead information is comprised of the sets of all terminals
visible at each of k lookahead depths. Specifically, let A (an array of sets) represent the linear-
approximate lookahead information for a particular production. A; is the collection of al termi-
nals visible at depth i starting from that grammar position. If the A sets for two productions do
not have at least one digjoint lookahead depth, the two productions are not separable — the deci-
sionisnot SLL1(k) deterministic.

The high compression of A sets results in a reduction in recognition strength because most
sequence information is no longer available. With regards to SLL*(k) decisions, the discriminat-
ing factor between induces actions is not specific terminal sequences, but sets of terminals at



68

certain lookahead depths. As one might expect for a lookahead depth of one, SLL(1) and
SLL (1) are equivaent. The following four subsections provide an example SLL*(k) grammar,
give SLL1(k) decision statistics, discuss lookahead information compression, and formalize
SLLY(k) determinism.

5.1.1 Example SLL (k) Grammar

In order to illustrate the difference between SLL(k) and SLL (k), we present an example,
whichis SLL (2), but isalso SLLY(2). It provides someinsight asto why SLL1(2) is effective and
simpler than SLL (k). Consider the recognition of programming language labels presented in the
Grammar G5.1.

S wS

S - waE

S - IlErS
S - fwaEtE

G5.1

where waE specifies that a word followed by an assignment operator followed by an expression
should be matched; i, f, t, a, I, and r are *‘if’’, “‘for’’, *'to’’, “‘assign’’, *‘("’, and ‘)"’ ‘‘respec-
tively. Thefirst two productions of the statement nonterminal symbol, S, can begin with a word,
w. Hence, this grammar is not SLL (1). Lookahead of depth two is required, but 2-tuple com-
parisons are unnecessary. To demonstrate this, we provide the SLL (2) solution and then contrast

it with the SLL1(2) solution.
Consider the S_L (2) lookahead vectors (11, T») plotted for grammar G5.1in Figure 5.1.



69

| — 3
f4 1
1o i— 1
a— 2
w— 1 4
[ [ [ [ [
w a i f |
T1

Figure 5.1 Lookahead Vector Plot for Grammar G5.1

The vector endpoints in the lookahead vector plot specify the production number that the vector
predicts. The associated SLL (2) decision can be represented by the induces relation shown in

Table5.1.

Table 5.1 9L (2) induces Relation for Grammar G5.1

Lookahead (14,T,) O T?

Action

(w,w)
(w,i)
(w,f)
(w,a)
@i.1)
(f.,w)

predict S - wS
predict S - wS
predict S — wS
predict S - wakE
predict S - ilErS
predict S — fwaEtE

Equivalently, the decision can be represented in heterogeneous state form such as that in

Figure5.2.



70

upon (T4, Tp) O {(w,w),(w,i),(w,f)} predict S — wS
upon (T4, T) = (w,a) predict S - waE;
uponty U{i} predict S - IlErS
upon 14 O{f} predict S - fwaEtE;

Figure 5.2 Automaton for inducesin Table 5.1

By inspection of Figure 5.1, one finds that a series of two set membership tests can be used
to map lookahead vectors to an action in the image. Lookahead depth 1, uniquely maps (i,l) and
(f,w) to actions 3 and 4, but cannot separate actions 1 and 2. However, once actions 3 and 4
have been removed from consideration, a second set membership test on 1, can be used to
separate actions 1 and 2. With this in mind, the SLL (2) induces relation can be represented in a
functionally equivalent, but compressed, manner by the induces relation of Table 5.2.

Table 5.2 SLL*(2) induces Relation for Grammar G5.1

Lookahead 14, T, O T,T Action
{w}, {w,i,f} predict S —» wS
{w}, {a} predict S - wakE
{i}, {1} predict S - ilErS
{f},{w} predict S - fwaEtE

The induces relation in Table 5.2 is advantageous for two reasons. These k sets are easier
to compute than |T | tuples and SLL (k) decisions can be implemented more practically. For
example, the new relation can be represented in heterogeneous state form asin Figure 5.3.



71

upon Ty O{w} and 1, O {w,i,f} predict S - wS
upon Ty O{w} and 1, O {a} predict S - wakE;
upon Tty L {i} predict S - IlErS
upon 14 O {f} predict S - fwaEtE;

Figure 5.3 Automaton for inducesin Table 5.1

The SLL (2) and SLL(2) automaton states appear to be equally complex, but, in general, SLL (k)
induces relations (and resulting parser decision states) will be exponentia in size whereas
3L (k) lookahead information isonly O (|T | x k).

5.1.2 Empirica Studies of SLL*(k) Versus SLL (k)

To examine the recognition strength of SLL (k) relative to SLL (k), we examined 22 sample
grammar supplied by PCCTS [PDC92] users; see the Appendix for a description of the gram-
mars. Although ANTLR (the parser generator in PCCTS) generates LALL (k) parsers and allows
semantic predicates (semantics may ater the parse), the grammars still provide useful informa-
tion regarding the relationship between compressed and full lookahead.

Table 5.3 provides data collected for 22 sample grammars and breaks down the lookahead
decisions by type (either SLLY(k) or SLL (k)). There are no SLL (1) decisions because SLL1(1)
and SLL (1) are identical — they both compute the set of terminals that can be matched next.
Most decisions can be handled by SLL*(k) for k>1. Also, note that most decisions need only
zero or one terminal of lookahead.



72

Table 5.3 Deterministic Lookahead Requirements By Decision Type for 22 Sample Grammars

lookahead k<3
grammar | decisions SLL(0) S|S_|I__ Ll?lg i g g
st 311 198 R
2 150 %8 220
s3 230 141 7 29
s4 336 197 230
5 338 219 mwooe
6 83 50 00
s7 93 49 =0
8 62 2 2209
S % 77 2 29
S10 11 4 e 33
sit 20 7 B
s12 21 9 Lo
S13 26 14 Lo
si4 264 158 o
si5 1063 692 sl
si6 08 64 N0
s17 63 36 2 20
si8 232 141 20
s19 225 129 S
S0 214 95 oo
1 225 141 g2 2 9
S22 54 23 200




73

Table 5.4 summarizes the number of nondeterministic decisions for lookahead depths
greater than one. The number of non-SLL (3) decisions arise from three areas. First, the gram-
mars were taken from users of ANTLR, an LALL (k) parser generator (SLL (k) O LALL (k)
[SiS82]). Second, some of the grammars used ANTLR’s semantic predicates to resolve syntactic
nondeterminisms with semantic information, which is unavailable to our SLL (k) grammar
analysis tool. Third, a number of nondeterminisms arise normally in real grammars; e.g., the
infamous ‘ ‘dangling-else’’ construct.

Because SLL % (k) has linear time and space complexity, it is efficient to make k very large to
see if the extra lookahead will resolve any SLL (k') decisions for k'<k. The ‘‘S.L(3), non-
SLLY(10)" column illustrates that only a handful of decisions must use full SLL (k) lookahead
information. The **SLL*(10), non-SLL (3)"’ column indicates that one of the sample grammars
had three decisions that linear SLL*(10) could resolve, but SLL (3) could not. Clearly, SLL (10)
could resolve the nondeterminism, but computing O (|T |1°) 10-tuples would take lifetimes to
terminate. Hence, in practice, there is no strict ordering between S_L (k) and its linear approxi-
mation SLL (k) because there is alimit to the depth of lookahead available to SLL (k) decisions.



74

Table 5.4 Number Nondeterministic Lookahead Decisions By Type for 22 Sample Grammars

grammar

number of decisions

SL(2),
SL(3)

non-SLL (3)

non-SLL1(10)

L),
non-S_L 1(10)

9 L1(10),
non-SLL (3)

BBLBARBYBE

ONOPFRPOORFRPRMOMOOOOO0OO0ODOCOOORMOOW

OOI—‘OI\)CDOJ\II—‘OOO-bl—‘I\)BI—‘I—‘OJI\)OQ)

coroNnvooOoBroocor~rrNERRANON

QOO0 O0OO0OO0OWOOOOO0OOOOOOFrRrOOM

cNeololoNoNoltloloNololololololoNoloNoNoNoNe




75

To summarize the information concerning decision types, Table 5.5 sums the columns in
Table5.4.

Table 5.5 Total Number Nondeterministic Lookahead Decisions By Type for 22 Sample Grammars

number of decisions
grammar SL(2), i Q1 SL(3), S L1(10),
SLL@) | gz | oSLE) | nonSLA0) | 09 1T(10) | non-9L (3)
Total 1584 19 47 49 5 3

There were 19 decisions requiring SLL (2) and SLL (3) of which 5 could not be handled by
SLLY(k) for k up to 10; hence, 5/19x100 = 26% decisions required full SLL (k) lookahead infor-
mation or 74% of al sample decisions, which require k>1 lookahead, can be handled by
S L1(10). Again, there are even some decisions that SLL (k) can handle that SLL (k) cannot due
to exponential computation complexity restrictions on SLL (k). The next section exploresin more
the detail the reduction in strength from SLL (k) to SLL (k) for the samek.

5.1.3 Recognition Strength Versus Space Requirements

S.LY(k) is an proper subset of SLL (k) because there are SLL (k) induces that cannot be
mapped correctly with SLLY(k). The merging of all terminals at lookahead depth i to create the
N\; sets generates artificial lookahead vectors because most terminal sequence information has
been destroyed. O(|T |¥) sequences of terminals have been compressed to k sets of terminals,
which comes at the cost of reduced recognition strength. A series of k set membership tests
effectively matches any permutation of terminals formed by the concatenation of aterminal from
N\, followed by aterminal from /A, and so on. For example, the two lookahead tuples (a,b) and
(c,d) for some action j have sets Al = {a,c} and Ab = {b,d}. The SLL1(2) decision strategy,
however, maps any tuple with {a,c} at lookahead depth one and {b,d} at lookahead depth two to
action j — tuples (a,b), (a,d), (c,b), and (c,d). Another way to view this compression is to con-
sider the representative DFA’ s such as those depicted in Figure 5.4.



76

9L (2) Lookahead DFA S.L1(2) DFA Using Al Sets
Matches (a,b), (c,d) Matches (a,b), (a,d), (c,b), (c,d)

a _/ 1\ -Qa,cob,d\©j

Figure 5.4 DFA’sfor Example Lookahead Tuple Space

In terms of lookahead vector plots, /A set compression projects all k-vectors onto the T; axes.
For example, consider the induces relation of Table 5.6, which results in the lookahead vector
plot shown in Figure 5.5.

Table 5.6 Example SLL (2) induces Relation

Lookahead (1,,1,) O T2 | Action O {1..4}

(b,b) 1
(c.e)
(d,d)
(c.a)
(ec)
(ab)
(a.d)
(d,c)

A W OWDNDNPREPPRP




77

e—| 1
d- 3 1
T2 C 4 2
b—-{ 3 1
a—| 2
[ [ [ [ [
a b c d e
T

Figure 5.5 Example Lookahead V ector Plot

The associated induces relation is 9L (2) because no 2-tuple induces more than a single action
(there are no overlapping vector endpoints in the lookahead plot). The relation is SLLY(2)
because there exists a T; axis upon which, for each pair of actions, all lookahead vectors for those
pairs may be projected without overlap. Action 3 is projected without overlap onto the 1, axis,
effectively separating it from the other three actions; similarly, actions 1 and 2 are separable
when projected onto the 1, axis. An SLL*(2) induces is therefore consistent and is shown in
Table 5.7. Note that there need not be a single lookahead depth that separates all productions; it
is sufficient to have a depth that separates each pair of productions.

Table 5.7 Example SLL%(2) induces Relation

Lookahead 14, T O T,T | Action O{1..4}
{b,c,d}, {b,d,e} 1
{c,e}, {ac} 2
{a}, {b,d} 3
{d}, {c} 4

An SLLY(2) parser state is much simpler than a functionally equivalent SLL (2) state would be.
The SLLY(2) state is shown in Figure 5.6.



78

upon 14 O {b,c,d} and 1, O {b,d,e} predict production;
upon T, O {c,e} and 1, O{a,c} predict productions;
upon 14 O{a} and 1, O {b,d} predict productions;
upon 14 O {d} and 1, O {c} predict production;

Figure 5.6 State for Example induces

A nice way to examine SLL1(k) decisions is to plot both the real and artificial lookahead
vectors. Figure 5.7 is the same as Figure 5.5 except that the artificial vectors have been added;
““x"" jsan artificial tuple for action 1 and ‘0’ represents an artificial tuple for action 2; there are
no artificial tuples for actions 3 and 4.

e_| X 1 X
d- 3 x X 1
T2 C— o] 4 2
b 3 1 X X
a— 2 o]
[ [ [ [ [
a b C d e
T

Figure 5.7 Lookahead Vector Plot With Artificial Vectors

None of thereal or artificial vectors overlap; hence, the decision is SLL(2). A small reduction in
strength is sacrificed for a tremendous reduction in space requirements to perform an induces
relation — from space O (| T |¥) to O(|T | x k). Moreover, SLL(k) can be used to handled the
majority of SLL (k) decisions. In the next section, we formalize a number of the observations
made up to this point concerning the relative strength of SLL*(k) and the way in which SLL(k)
lookahead can be used to separate alternative productions.



79
5.1.4 S_L*(k) Formalisms

SLLY(K) is a very useful language class. It covers most SLL (k) decisions and has linear
complexity in terms of grammar analysis and parser decision state complexity. Further, it can be
used to reduce the complexity of full SLL (k) analysis and decision state complexity. Chapter 7
describes how C*(k) decisionsin general can be used to reduce the complexity of C (k) decisions.
In this section, we define SLL (k) decisions formally, show that it is strictly weaker than SLL (k),
and show that SLL (k) decisions correctly predict productions.

A parsing decision is SLL (k) separable if there does not exist a k-tuple that induces more
than one parser action (predicts more than one production). We define SLL *(k) analogously:

Definition: A decision is SLL1(k) iff there does not exist an artificial (arising from A set
compression) or real lookahead tuple that predicts more than one alternative production.

An SLL1(k) grammar is one for which all decisions are SLL (n) for some n<k.

Generic SLL % (k) decision states are of the form shown in Figure 5.8 where mis the number
of productions.

uponty OAf and...and 1, O A} predict production;
uponty OAf and ... and 1, O A3, predict production,

uponty OAT and...and 1, O AR predict productiony,

Figure 5.8 Generic SLL (k) Decision State

where n; is the maximum lookahead depth required for any production pair involving i. Letting
n, = k renders the generic state the most powerful SLL*(k) state because it uses all k lookahead
depths and compares as most 1-tuples (sets).

The following theorem establishes the relative strength of SLL1(k).
Theorem 5.1: SLLY(k) O SLL (k) for k>1.

Proof:
Thisis easily shown by example. Consider Grammar G5.2.



80

A - B
A - ad
B - ab
B - cd

G5.2

The SLLY(2) lookahead information, {LOOK}} {LOOK3}, for A - Bis Al = {a,c} {b,d} and
for A>= A _ ad is {a} {d}. Clearly, there is no lookahead depth, n, for which A} A A3 is
empty. Lookahead ad predicts both productions; a isin the set of terminals that can be matched
at lookahead depth one and d is in the set of terminals that can be matched at lookahead depth
two for both productions. Grammar G5.2 is non-SLL1(2), but it is SLL (2) by inspection; this
implies that there exists a grammar that is SLL(k), but is not SLL(k). Therefore,
SLL(k) O 9L (k).

O

Note that SLL*(1) and SLL (1) are equally strong as both lookahead computations, LOOK ; and
LOOK?, compute the same information — the set of terminals recognizable at lookahead depth
one.

We turn now to the formalisms needed to test decisions for the SLL(k) property.

Lemma 5.1: A production pair p,q in an induces relation is SLLY(k) @ = n<k such that
AN n AI=0.

Proof:

O : Itiseasily seenthat 1, O AR induces p and 1, 0 AJ induces q if the A, sets are digoint. This
test is SLL (k) because, at most, a lookahead depth of n<k was employed and only 1-tuple (set)
comparisons were done.

O : if aproduction pair is SLL(k), it is distinguishable with alookahead depth of k and with only
set memberships. Hence, the most powerful, compliant, distinguishing expression under the
SLLY(n) constraints is the following:

upon 1, O AR and ... and 1, O AR predict production p
upont; OAf and ... and 1, O AY predict production g

Assume the opposite: No A; sets are digjoint for any i =1..k. But, this would imply that the most
powerful test cannot distinguish between productions, which contradicts our assumption that it is
S LY(k). Hence, being SLLY(k) distinguishable implies that A sets for at least one of the
lookahead depths, n<k are digoint.

O

Theorem 5.2: An induces relation is SLL*(k) I = n<k for each production pair p,q such that

AR A AR =0. If thereis only one production in the induces relation, it is trivially LK) for
k=0.



81

Proof:
O : if the induces relation is SLL(k), then any pair of productions p and q must be mutually
S.L}(n) separable for some n<k. By Lemma 5.1, thisimpliesthat AR [ Al =0.

O : If each pair p,q is SLLY(n) for n<k, then all productions are mutually SLL*(k) separable and,
hence, the induces relation must be SLL (k).
O

Lemma5.2: An SLL*(k) decision uses minimal lookahead depth I AP A Af# 0 for i=1.k-1
and for all production pairsp,d.

Proof:
O : if an SLLY(k) decision uses minimal lookahead, then for each production pair p,q there is no
n<k for which the decision is SLL*(n). Hence, AP n Af # 0 for i =1..k-1.

O: If for all production pairs p,g AP A Afl#0 for i=1.k-1, then al production pairs are
trivially SLL*(k) by Theorem 5.2.
O

Minimal lookahead is generally desirable, but there may be a single lookahead depth farther
out that separates all production pairsin a decision, which reduces the time and space complexity
of a decision state to O(1) and O(|T |), respectively. Sufficient, but not necessary, conditions
for adecision to be SLL*(k) are given in conditions Claand C1b.

j=m
N AL=0 Cla
j=1

and
j=m
N Alz2z0  i=1.n-1 Clb
j=1
for n<k and where mis the number of productions. These conditions indicate that, for some loo-
kahead depth n, all A, sets are disjoint; hence, this n™ set alone is sufficient to deterministically
map induces. This situation occurs more often than is initially apparent; all SLLY(1) decisions
satisfy these conditions. A decision state of this formis shown in Figure 5.9.



82

upon T, O A} predict production;
upon T, 0 A2 predict production,

upon T, O A predict productiony,

Figure 5.9 Optimized SLL*(k) induces State

Lookahead terminals at depths 1..n—1 are ignored; each action has at least one lookahead tuple
with a terminal appearing at depth i <n that collides with the A; of another production. Surpris-
ingly, this optimization implies that, occasionally, deeper lookahead yields a faster and smaller
decision; e.g., while (14,T,) might separate productions, 13 alone might also. Also recall that,
normally, only a subset of the edges emanating from a parser state require SLL(k) for k>1. The
other edges can be traversed using SLL *(1). Hence, different decision strategies can be used even
within the same state (if a series of lookahead tests are done rather than a single m-ary branch).

In this section, we defined an SLL*(k) decision to look at most k terminals into the future
and to use at most 1-tuple (set) comparisons. SLL (k) lookahead information is essentially an
approximation to SLL (k). The SLL(k) class covers the majority of SLL (k) decisions, has linear
grammar analysis complexity, and results in decision states with linear space requirements; full
SLL (k) has exponential analysis and space requirements. Although SLL(k) is theoretically
weaker than SLL (k), it can look farther ahead due to its linearity, which may in practice make it
as strong or stronger in some instances.

We presented statistics to support our claim that SLL (k) is a useful class of decisions and
provided theorems and lemmas that formalize its recognition strength and lead to decision imple-
mentation templates. In the next section, we present algorithms that compute LOOK{ lookahead
information.

5.2 S_L*(k) Lookahead Computation

Because SLLY(k) grammars are represented as GLA, lookahead computations can be
defined as a collection of simple recurrences. The recurrences specify a walk of the GLA, start-
ing at some state, along which the non-¢ edge-labels at distance k are collected into a set called
LOOKE. This section presents an example SLL *(k) lookahead computation and provides an algo-
rithm to implement LOOK following the recurrences given in Section 4.9.1.



83

5.2.1 Example Lookahead Computation

Before giving algorithms for computing lookahead information, we illustrate how SLL*(k)
LOOK} will behave by constructing lookahead sets for nonterminal A in Grammar G5.3.

B - a G5.3

OO @00

Figure 5.10 Example GLA for LOOK Computations

To determine the set of terminal symbols that can possibly occur k terminals in the
“future’’, one ssimply walks the GLA to find al non-e-edge labels that appear after having
“walked over’’ k—1 edges (e-edges are traversed in search of other edge types, but are not
included in sets or counted as actual terminals); in other words, perform a bounded depth-first
search of the GLA. As lower cost decisions are attempted before those with higher cost, k=1 is
attempted first. LOOK? (A - Be) entersthe GLA at node A and traverses the -edge to node B
whereupon it sees edges a and b at depth one. Hence, LOOK1 (A — eBe) is{a,b}. Similarly,
LOOK} (A - eab) enters the GLA at A and immediately discovers an edge labeled a at depth
one; the lookahead for production two of nonterminal A is therefore {a@}. The induces relation
for Aistabulated in Table 5.8.



Table 5.8 SLL (1) Relation induces for Grammar G5.3

Lookahead 1; O T Action
{a,b} predict A - Be
{a} predict A - ab

Because a induces two actions, A is not SLLY(1) (or SLL (1)) and SLLY(2) must be attempted.
LOOK3 (A - eBe) enters the GLA at node A, moves past the depth one edges following node B
and traverses the e-paths to nodes S, and & looking for LOOK}I(A - Bee) and
LOOK}(C — Bec). From Sy, eis found at relative depth one; from &, c is visible at relative
depth one. LOOK3(A - eab) moves past the a edge following node A to find b at depth two
(relativeto A). Theinducesrelation then becomes deterministic; it is shownin Table 5.9.

Table 5.9 S_L%(2) induces Relation for Grammar G5.3 at k=2

Lookahead 1, O T Action
{c,e} predict A -~ Be
{b} predict A - ab

Table 5.9 gives the minimal information required to induce correct parser action from node A. In
this way, the phase of a parser generator that generates output parser states does not have to be
incredibly clever about how it implements induces; the mapping will be optimized heavily by the
grammar analysis phase (the number of tuples to map can be made minimal, in general). The
associated heterogeneous automaton state is given in Figure 5.11.

upon T, O {c, €} goto p;
upon T, ={b} goto g

Figure 5.11 Heterogeneous Automaton for Node A of Grammar G5.3



85

This mapping is surprising as it predicts an SLL (2) decision by examining only one lookahead
terminal (albeit, the terminal at depth two) — the decision is SLL(2).

The example computation in this section illustrates that computing LOOKG is not terribly
difficult. The next section provides algorithms that perform the same bounded depth-first-search
on the GLA to compute SLL *(k) lookahead sets.

5.2.2 Algorithms to Compute SLL 1 (k) Lookahead

The definitions of FIRST} and FOLLOW: are useful as canonical operations, but LOOKG is
computed when building a parser. This section presents two algorithms to compute LOOK} in
the SLL1(k) sense. The first has an exponential complexity, but is straightforward; the second is
efficient, but is more complicated. Both algorithms implement the set of SLL*(k) recurrences as
described in Chapter 4.

Given a position in a grammar, SLL*(k) LOOK{} returns the set of terminals that could be
matched, while deriving any valid sentence, at a lookahead depth of k. This algorithm operates
on GLA constructed as per Section 3.5; it performs what amounts to modified REACH and &-
CLOSURE operations to find the set of terminals reachable from a given state. Figure 5.12
implements exactly, in pseudo-code, the recurrencesin Figure 4.3.

function LOOKE( p : Node) returns set of terminal;
begin
var rv: set of terminal;

if p=nil or k=0then return [J;

if p.busy[k] then return J;

p.busy[k] =true;

if (p.edge; is-aterminal ) begin
if (k>1) then rv=LOOK4_; (p.edge;):
elserv=p.labe ;

end;

elserv = LOOKG (p.edge;):

rv=rv [ ] LOOKg(p.edgey);

p.busy[k] = false;

returnrv;

end LOOKE;

Figure 5.12 Inefficient Strong LOOK{ Algorithm on GLA

This agorithm is simple for the following reasons:



86

e The GLA structure used to represent grammars encodes much of the usua procedure used
to compute lookahead information. For instance, the FOLLOW-links that emanate from
each nonterminal GLA accept state encode the fact that the FOLLOW of a nonterminal must
be included when any production generates fewer than k terminals.

. The algorithm computes LOOK} in the SLL (k) sense; i.e. context-insensitive FOLLOW
sets may be used whereasin LL (k) they cannot; see Chapter 7.

. Results are not saved for use by future computations.
e At most two arcs emanate from any GLA state including nonterminal entry and exit states.
e  Computations maintain and return sets of terminals not sets of k-tuples.

This version of LOOK{ is naive because it does not save results so that future computations
do not repeat the work. Because LOOK} is an independent function for each k, an obvious
improvement isto provide a set of k caches for each entry and exit node associated with a nonter-
minal. In thisway, no computation would be performed more than once, which is quite common
during grammar analysis. If no computation cycles were possible, caching would be an
extremely simple addition to the LOOK} algorithm in Figure 5.12 because computations could
not terminate early resulting in incomplete information. Unfortunately, cycles are common and
an operation that is incomplete cannot be cached in an obvious way. It would appear that partial
results must be cached and that the results must be completed after the cycle completes. In other
words, after each LOOK} operation completed, it would correct all cache entries that were
incomplete by inserting the necessary termina set. This mechanism would work, but a smpler,
more elegant solution exists.

Recall from Section 4.9.3 that all LOOK computations in a cycle result in the same looka-
head information. Therefore, computations that must terminate early due to cycle detection can
return the partial results of that computation branch and then cache the ‘‘result’’ that that LOOK
branch is a member of acycle. Later, when the same LOOK computation is requested, its cache
entry will point to the computation result for the entire cycle. If the cycle result has not be com-
pleted, the cache simply returns a reference to the computation that will eventually be finished.

Cache entries consist of a set of terminals and a completion flag, where the completion flag
is true if the cache entry may be used directly; a completion flag of false implies that the entry is
areference to the cache entry of another nonterminal which isthe head of acycle. A cache entry
exists for entry and exit state of each nonterminal and for each lookahead depth. The LOOK}
computation cacheis, therefore, of sizeO(|T | xk x [N |).

Let us re-examine the grammar from Section 4.9.3 as an example of LOOK} cyclic compu-
tation caching



87

A - a,Ba
A - a,B
B - a3C
C - ajA
C -

Consider the following computation sequence:
LOOK1(B - a3;C e) =LOOKI(A - a,Be)[]a
LOOK} (A - a,B ) =LOOK}(C - asAe)
LOOK}(C - asAe) =LOOK}(B — azCe)

LOOK3} (B - a3C e) eventualy causes the invocation of LOOK1(C - a,A ) which cannot
complete due to its need for LOOK}(B — azCe). Therefore, the cache entry for
LOOK}(C - a4Ae) is {imag(B,FOLLOW)} and labeled as incomplete where
imag (B, FOLLOW) is an imaginary terminal representing a cycle to nonterminal A in the FOL-
LOW sense; in practice, only the nonterminal is recorded because when requested again, the
requesting function invocation knows which sense of cycle occurred (the cache is connected to a
GLA entry or exit node). The computation specifies, via a return parameter, that a cycle to C
occurred. LOOK? (A — a,Be) invokes a computation which results in a cycle; hence,
LOOK} (A - a,Be) is a member of that cycle and also has an incomplete cache entry of
{imag (B,FOLLOW)}. Similarly, LOOK}(B - a3C e) redizesthat it isamember of cycle, but a
cycle to itself. The computation can do no more work and considers itself complete. The cache
entry for LOOK? (B — a3C @) is{a} and is complete. Future requests for any of the incomplete
computations would examine the entry for LOOK} (B - a3C ), find it complete, complete its
own computation from that information, and finally return a copy of its now complete cache
entry. Cycles can theoretically occur from traversals of both edges emanating from an GLA state.
In this case, the computation is a member of two cycles, which effectively yields a bigger cycle.
The cache may refer to either cycle arbitrarily without effecting the result of the computation.

Figures 5.13, 5.14, and 5.14 comprise an efficient algorithm to compute LOOK} using the
caching mechanism just described.



88

function LOOKE( p : Node, var cycle : nonterminal ) returns set of terminal;
begin

var rv: set of terminal;

var cycleq, cycle, : nonterminal;

cycle; = not-a-cycle;
cycle, = not-a-cycle;
if ( pis-node-with-cache and p.cache[k] not-empty ) then return retrieve-from-cache( p, cycle);
if p.busy[k] then begin
cycle=p.rule
return ;
end;
p.busy[k] =true;
if (p.edge; is-atermina ) then begin
if (k>1) then rv=LOOK{_; (p.edgey, cycle,);
elserv=p.label ;
if ( cycleq is-cycle-to-current-node ) then cycle; = not-a-cycle;
end;
else begin
rv = LOOK(p.edge;, cycley);
if ( cycleq is-cycle-to-current-node ) then cycle, = not-a-cycle;
end
rv=rv [] LOOKg(p.edge,, cycle?2);
if (cycle, is-cycle-to-current-node ) then cycle, = not-a-cycle;
p.busy[k] = false;
if ( pis-node-with-cache) then store-into-cache( rv, p, cycleq, cycle, );
returnry;
end LOOK¢:

Figure 5.13 Efficient Strong LOOK{ Algorithm on GLA



function retrieve-from-cache( p : Node, var cycle : nonterminal ) returns set of terminal;
begin

var nt ;: nonterminal;

var node : Node;

if ( p.cache[k] is-complete ) then return p.cachel[K];
else begin
nt = imaginary-terminal-to-nonterminal ( only-element-of ( p.cache[k] ) );
if ( pis-entry-node) then node = entry-node-of( nt );
else node = exit-node-of ( nt );
if ( node.cache[k] is-complete) then return set-dup( node.cache[k] );
else begin
cycle =nt;
return OJ;
end;
end;
end retrieve-from-cache;

Figure 5.14 Cache Retrieval for Efficient Strong LOOK

89



procedur e store-into-cache(  rv : set of terminal,
p : Node,
cycle; : nonterminal,
cycle, : nonterminal );
begin
var ¢ : nonterminal;

* cachethis set for use by other functions if complete */
if (cycleq, cycle, are-not-cycles) then begin
p.cache[k] = set-dup( rv);
indicate-complete( p.cache[k] );
return;
end

if (cycleq is-cycleor cycle, is-cycle) then

begin
if (cyclelis-cycle) then c = cycleq;
elsec=cycley;
p.cache[k] = set-of ( nonterminal-to-imaginary-termina( c) );
indicate-incomplete( p.cache[k] );

end

end store-into-cache;

Figure 5.15 Cache Storage for Efficient Strong LOOK

90



91

Once lookahead information has been computed, testing for the SLL (k) property is asim-
ple matter of applying the theorems and lemmas in Section 5.11.4.

5.3 Testing for the SLL (k) Property

This section provides an algorithm to test a grammar for SLL*(k) determinism. The advan-
tage of this algorithm is that is has linear time complexity and SLL*(k) is close to SLL (k) in
strength. Figure 5.16 presents a procedure which must be applied to each nonterminal in N.



proceduretestS_L ( rule : nonterminal, max_k : integer );
begin
k=1;
p = first-production-of rule;
while p # nil do begin
f; = LOOK(p.edgey);
q = p.edge;
while g # nil do begin
f, = LOOKE(g.edge; );
while f; A f, # O do begin

if k=max_k then report-nondeterminism;

else begin
k=k+1;
f, = LOOKE(p.edge,);
f2 = LOOK(q.edge);

end;
end;
q = g.edge;;
end;
p = p.edgey;
end;
end testSLL1:

Figure 5.16 Algorithm on GLA to Test SLL *(k) Determinism

92



93

The outer two loops iterate through all

unigue production pairs where mis the number of productions for some nonterminal; production
pair separability over al production pairs in a decision implies that the entire decision is deter-
ministic. As per section 5.11.4, to guarantee production pair separability, it is sufficient to find a
single lookahead depth n<k that has no terminals in common. Therefore, only A, sets are exam-
ined for each lookahead depth n rather and al 1..n at each iteration. The innermost loop is per-
formed until either a lookahead depth is found that separates the current production pair or the
maximum allowable lookahead depth, k, is reached. If the maximum lookahead depth is reached
without resolving the production pair prediction problem, the decision is not SLL*(k) due, at
least, to this production pair.

To define the complexity of this algorithm, we separate the cost of computing lookahead
information from the cost of iterating over all productions and all nonterminals. As aways, we
will assume the worst-case scenario. Ignoring lookahead computation costs, for a single nonter-
minal, testSLL* requires space proportiona to |T |, the size of a set of nonterminals, and time
proportional to

2
o ﬂ] 0

IN|

where |P |/|N | is the average number of productions per nontermina (this is a constant less
than eight normally in practice). The space required to test all nonterminals is dominated by the
space required to compute all LOOKE sets— O(|G | xk x |T|). Multiplying for each nonter-
minal and adding in the time for LOOK} computations established earlier,

P |2
IN|

O(IG| xkx |T|+

or, roughly O(|G | xk x |T|), is required to test all nonterminals for the SLL(k) property.
S.L1(k) testing is therefore a linear function of k for afixed grammar.

Once all parser decision states have been tested for the SLL*(k) property, parser construc-
tion may begin. The next section describes a simple and effective decision state construction
mechanism.



94

5.4 SLL*(k) Parser Construction

The construction of SLL (1)-based parsersis well understood and sufficiently covered in the
literature. In contrast, only theoretical methods exists for lookahead depths greater than one.
These techniques are generally simple extensions to those used for SLL (1). To construct practi-
cal parsers, we describe parsers as heterogeneous automata; each decision state can use a different
lookahead expression. Heterogeneous automata can be implemented either as a group of
independent states that control the parse (without an interpreter) or as a set of mutually recursive
functions or procedures. We choose recursive-descent as the best choice for the implementation
of al LL-based parsers because of the great flexibility it affords. Although the lookahead deci-
sions themselves are the focus, compl ete parsers for nonterminals of interest will be constructed.

Once a recursive-descent parser has entered a function matching some nonterminal, a pred-
iction expression, or series of expressions, must indicate which code to execute; i.e. which pro-
duction to apply. This section suggests one of the possible prediction expression mechanisms —
a series of tests, one for each production to predict. This method is the slowest in terms of pars-
ing speed, but is easiest to implement, has the smallest space requirements, and has an acceptably
fast average execution time; it has been used in ANTLR [PDC92] to construct LALL (k) parsers.

In general, SLL (k) nonterminal parsing decisions will be of the form shown in Figure 5.17.

procedureA;
begin
if t; OAfand 1, OA3 and ... and 1,, O A} then begin
match production 1;
end;
elseif 1 DA and 1, DA% and ... and 1,y O A2 then begin
match production 2;
end;

elseif 1y DA and 1, DAY and ... and 1.+ O A, then begin
match production m;
end;
end A;

Figure 5.17 SLL (k) Nonterminal Decision Template

Terminal references are implemented as MATCH(a), a simple macro, which ensures that the
current lookahead symbol matches a and consumes a terminal. Nontermina references are
merely calls to the appropriate procedure. The lookahead depth, even within one decision, can
vary according to the structure of the productions within that grammar decision point; this saves
both analysis and parser time and space. From a user-semantics point of view, downward-



95

inheritance and upward-inheritance are trivially implemented as arguments and return values
respectively (recursive-descent parsers have excellent semantic flexibility).

Consider the recognition of Grammar 5.6, which is SLL(3).

A - Ba
A - Cc
A-D
A - af
B - bc
B-eg
C - hg
C - ef
D - «
D - ut

G5.6

Although nonterminal A is SLL1(3), nonterminals B, C, and D are S_LL(1) and, hence, their
implementations would be much smaller. Theinducesrelation of A isshown in Table 5.10.

Table 5.10 Example SLL*(3) induces Relation

Lookahead 11, 1o T3 O T, T,T Action

A}, A3, AL ={b,e},{cg},{a} | predict A - Ba
N3, N3, A5 ={be, {gf, {c | predictA - C
A3, A3, A3 ={su}, {t},{$} predict A — D
AL NS NS ={a}, {f}, {$} predict A — af

A can be implemented by the procedure in Figure 5.18.



96

procedureA;
begin
if 1y O{b,e} and 1, O {c,g} and 13 = athen begin
B;
MATCH(a);
end;
eseif 14 O {b,e} and 1, 0{g,f} and 13 = cthen begin
G
MATCH(c);
end;
elseif 14 O {s,u} and 1, =t and 13 = $ then begin
D;
end;
elseif Ty =aand 1, = fand 13 = $then begin
MATCH(a);
MATCH(f);
end;
end A;

Figure 5.18 S_L *(3) Implementation of A

Many local optimizations can be made. For example, only the first two productions require more
than a single terminal of lookahead and lookahead depth two, T», is not needed to predict any pro-
duction. Therefore, the prediction expressions can be reduced to that of Figure 5.19.



97

procedureA,;
begin
if 14 O {b,e} and 13 = athen begin
B;
MATCH(a);
end;
elseif 14 O {b,€} and 13 =cthen begin
G
MATCH(c);
end;
esaif 14 O {su} then begin
D;
end;
elsaif 1, = athen begin
MATCH(a);
MATCH(f);
end;
end A;

Figure 5.19 Optimization of A's Implementation

The 141 terms remain because they distinguish the first two productions from the other two pro-
ductions. Any lookahead depth used to separate any production pair must be included in their
production prediction expression.

The set membership test used in the above examples can be implemented in space
O(|T |/wordsize) and in time O (1) where wordsize is the width in bits of a machine word. Each
unique terminal set is expressed by a particular bit position within an array, setwd, indexed by the
terminal. For example, “‘setwd[1;] & 1"’ tests 1, for membership in the set nhumbered 1, where
“*&’" isthe bitwise ‘‘and’’ operator. If the bit isone, T, isa member of that set. setwd isatable
asin Table 5.11.

Table 5.11 Sample Bit Set Implementation — setwd Array

setwd index bits

0001
0010
0001
0010
0010

O Q O T 9




98

which indicates that a and ¢ are members of the first set (bit position 0; set membership testing is
abitwise ‘*“and’’ing with 1) and b, d and e are members of the second set (hence we mask with 2.
This type of membership operation is O (1), which results in much better execution speed than the
equivalent operation on alist representation of a set (which must be searched).

The induces relation is computed implicitly by the SLL(k) determinism algorithm.
Specifically, the results of each LOOKGE, computed during the course of the algorithm, are stored
in p.look![k] where p is the node for which the LOOK} was requested and p.look? is a results
buffer in node p. A parser generation pass then trivially walks the GLA for the grammar generat-
ing code according to the templates discussed above. Because the SLL(k) determinism algo-
rithm computes only as much lookahead as necessary, the resulting parsers use the least possible
amount of lookahead; p.look*[i] will be nonempty for al i =1..n where n<k is the minimum loo-
kahead needed to predict that production.

In this chapter we defined a linear approximation to SLL (k) called SLL*(k). We aso pro-
vided empirica data that suggests SLL *(k) handles most SLL (k) decisions and presented algo-
rithms for computing the SLL (k) lookahead operator (LOOKE) and for testing for the SLL (k)
condition. Computing al possible SLL*(k) LOOK} operations can be done in time and space
O(|G | xk x |T|); because SLL*(k) testing is dominated by the cost of computing lookahead
information and is, therefore, O(|G | xk |T|). A method for constructing SLL (k) parsers was
also developed; specifically, a recursive-descent procedure was used for each CFG nonterminal
that employed a series of up to k set memberships for each of m aternative productions.

SLLY(k) has linear grammar analysis and lookahead information characteristics, but is
strictly weaker than SLL (k). Unfortunately, SLL (k) has exponentially large lookahead informa-
tion. In the next chapter, we develop SLL (k) parsers fully and demonstrate how SLL (k) gram-
mar analysis and decision state construction methods can be used in conjunction with SLL (k)
methods to reduce S_L (k) to near-linear performance.



99

CHAPTER 6 9L (K)

SLL (k) parsing decisions have lookahead languages that are of size O(|T |¥) in the worst
case. Chapter 5 defined an approximation to SLL (k), denoted SLL *(k), that reduced the language
sizeto O(|T | x k) and handled the majority of SLL (k) decisions. Practica S_L (k) parsers, are
built by employing the minimum amount of lookahead and by using SLL(k) decisions when
possible. For the few non-SLL (k) decisions, a hybrid SLL*(k)/SLL (k) decision is constructed
that typically has near-linear space requirements as is demonstrated in Section 6.18.

This chapter describes how practical S_L (k) parsers may be constructed. The first section
presents an example that illustrates the difference between SLL*(k) and SLL (k) decisions. The
second and third sections describe S_L (k) grammar analysis, which includes lookahead informa-
tion computation and testing for the SLL (k) property. The final section describes how 9L (k)
grammar analysis, when combined with SLL*(k) analysis, can be used to build practical SLL (k)
parsers.

6.1 Example SLL (k) Grammar

The difference between SLL*(k) and SLL (k) can best be described by way of an example.
Consider Grammar G6.1, which recognizes a few simple C Language declarations. It is SLL (3),
but not SLL1(3).

D - TEF

D - swS

TS

T s

E - wir

E-w

S - b struct_body e

F - b function_body e

G6.1

where| and r are left and right parenthesis; b and e are beginning and ending curly braces*‘{,}"".
Nonterminal D abstracts a declaration, T is a type, E is a declarator expression, Sis a structure
body, and F isafunction body. Terminal srepresents struct,wisaword,iis i nt,andtisa
type name. D will match sentences such as



100

sw b struct_body e
stw
i wb function_body e

which, represented in C, would be

struct word { struct body }
struct structname word
int word { function body }

The associated 9_L (3) induces relation for nonterminal D isgivenin Table 6.1.

Table 6.1 9L (3) induces Relation for Nonterminal D in Grammar G6.1

Lookahead (T1,T,,T3) O T3 Action
@i,w,l1) predict D - TEF
(i,w,b) predict D - TEF
(s,t,w) predict D - TEF
(s,w,b) predict D - swS

The results of SLL*(3) analysis, on the other hand, yields the induces relation in Table 6.2.

Table 6.2 SLL%(3) induces Relation for Nonterminal D in Grammar G6.1

Lookahead 11 1,13 O T, T,T Action
{i,s}{w,t}.{I,b,w} predict D — TEF
{st {w}{b} predict D - swS

Clearly, there is no lookahead depth, n, such that the A} and A2 are digoint; hence, the
decision is not SLL*(3). Oneis not left with the prospect of testing O (| T |¥) k-tuples, however.
Combining SLL(k) with a few k-tuple comparisons can be more efficient than the straightfor-
ward approach of huge tables, gigantic DFA’s or long sequences of k-tuple comparisons. Section
6.18 discusses this at length, but we present two sample SLL (k) decision states to illustrate the
mechanism; see Figures 6.1 and 6.2.



101

upon (tq, To, T3) O {(i,w,1), (i,w,b), (s,t,w)} predict D - TEF;
upon (T4, Tp, T3) =(s,w,b) predict D - swS

Figure 6.1 Conventional State for Nonterminal D in Grammar G6.1

The conventional state, which performs k-tuple comparisons, is straightforward, but can quickly
become exponential. Even though SLL*(3) isinsufficient for this decision, it is mostly sufficient;
the only problem with an SLL*(k) decision hereis that an artificial 3-tuple of D — TEF, (s,w,b),
is areal tuple predicting D — swS. If one were to use the SLL (k) decision template and then
tested for this one ‘‘irregularity’’, a correct prediction expression would result. Figure 6.2 illus-
trates this hybrid approach.

upon Tty O{i,s} and 1, O {w,t} and 153 O {I,b,w} and (14, T, T3) # (S,W,b) predict D - TEF;
uponTy =sand 1, =wand 13 =b predict D - swS

Figure 6.2 Hybrid State for Nonterminal D in Grammar G6.1

As a further reduction, consider an implementation of heterogeneous parser states that tests the
““upon’’ expressions sequentialy in the order specified rather than doing an m-ary branch. Inthis
case, if the second prediction expression appeared first, then the extra tuple comparison on the
D - TEF predictor is unnecessary. Even though both prediction expressions would match
(s,w,b), the first production would be predicted by default, thus, rendering avalid parse.

Because this example is so small, the hybrid SLL(k)/SLL (k) state does not appear to be
much of awin, but for real examples, k set comparisons plus a few k-tuple comparisons is much
better than | T | ¥ tuple comparisons or trying to store that many tuples into a hash table.



102
6.2 SLL (k) Lookahead Computation

SLLY(k) analysis returned a set of terminals at depth k away from the initial GLA state.
This information is used by SLL (k) to make extremely efficient decisions. However, when this
type of decision results in a nondeterministic parser state, an S_L (k) decision must be attempted,;
i.e. LOOK, information must be computed.

The GLA representation of a grammar is designed to allow lookahead computations to be
described as simple recurrences such as those of Section 4.9.1. The SLL (k) lookahead language
for agrammar position p, LOOK(p), is the collection of non-g-edges aong the walks of length k
emanating from the GLA state associated with position p. The lookahead information is formed
into child-sibling trees, which are much easier to manipulate than DFA’s (an equally valid looka-
head information representation).

While lookahead computations are easy to define on a GLA, the time and space compl exity
of an actual computation may be extremely high. There are two sources of nonlinearity in gram-
mar analysis. One source arises from the recursive nature of grammars (see Section 4.9.3 on
computation cycles) and another from the exponential size of the lookahead information. This
section provides three algorithms that implement the lookahead recurrences of Section 4.9.1: a
straightforward algorithm, an algorithm that uses the results of SLL*(k) analysis to prune the
number of walks, and finally an algorithm that caches all results for use by later computations.
We begin by illustrating the straightforward computation of lookahead via an example.

6.2.1 Example Lookahead Computation

To illustrate the computation of LOOK|, and the use of trees to compute |ookahead informa-
tion, consider Grammar G6.2.

A - Be
A - ab
B - a G6.2
B -d
C - Bc

Figure 5.10 shows the GLA that would be created.



103

OO @00

Figure 6.3 Example GLA for LOOK Computations

Whereas LOOK} walks an GLA collecting non-¢ edge labels into a set, LOOK| records the
paths as well as the non-¢ edge-labels. LOOK (A — eBe) jumps the €-edge to state B where it
sees two alternatives. Arbitrarily choosing to traverse edge a, LOOK , finds its first usable piece
of information and creates a tree node. Because a terminal edge has been traversed, the looka
head depth has been reduced by one. Therefore, LOOK ; is attempted for the state pointed to by
the a edge in production one of B. LOOK ; traverses both *‘FOLLOW "’ links, finding edges e in
nonterminal A and c in nonterminal C. Because these can be viewed as an alternative set of ter-
minals, the tree nodes are connected as siblings e - c¢. To combine the LOOK 4 tree with the
previous work, done by LOOK ,, the a tree node becomes the parent of e and c:

a
!
e - C

LOOK , is not finished yet as it must walk the second aternative of B. LOOK ; is applied to the
node pointed to by the d edgein B, which returnse - c. Edge d precedesthe LOOK ; operation
and hence, the lookahead tree for the second production of B is:

d

l
e - C

The two subtrees with a and d as roots are alternatives in relation to each other and become
siblings in anew, larger tree, which is returned as the lookahead tree for B:



104

Computing LOOK 5 (A — eab) is straightforwardly:

a
l
b

6.2.2 Straightforward LOOK, Algorithm

The recurrences of Section 4.9.1 can be implemented in a fairly straightforward, but
inefficient, manner. Figure 6.4 provides such an algorithm to compute LOOK.

function LOOK( p : Node) returnstree of terminal;
begin
var t,u: treeof terminal;

if p=nil or k=0 then return nil;
if p.busy[k] then return nil;
p.busy[k] =true;
if (p.edge; is-aterminal )
p.label
t= ! ; I* create tree with label asroot */
LOOK-1(p.edge;)

else

t = LOOK(p.edge4);
u = LOOK(p.edge>);
p.busy[k] = false;
if t=nil then return u;
edsereturnt - u; /* createtree with t,u assiblings*/

end LOOK;

Figure 6.4 Straightforward 9L (k) LOOK Algorithm on GLA

The straightforward algorithm makes no attempt to save the results of its computations for future
use and, hence, may exhibit exponential behavior derived from the recursive nature of grammars.
It most certainly will encounter the exponential size of LOOK information. This algorithm is
roughly O(|G [ x |T|%) in the worst case. The next section presents an algorithm that, using
SLLY(k) analysis results, attempts to reduce the exponentiality derived from the huge lookahead
information.



105
6.2.3 Constrained LOOK, Algorithm

This section provides a LOOK| algorithm that is typically more efficient than the straight-
forward algorithm, but still does not cache computations; hence, the grammar-derived exponen-
tiality isignored. It walksthe GLA as before except that it does not follow every possible edge.
The size of the lookahead information, therefore, is reduced, but the results cannot be cached as
they are incomplete. This method is employed by ANTLR, the parser generator in PCCTS
[PDC92], to practically generate, without caching, LALL (k) parsers, the worst-case behavior of
the constrained algorithm is identical to the best-case/worst-case behavior of the straightforward
algorithm. We begin by discussing how the constrained LOOK algorithm is used.

Before testing a production pair p,q for the SLL (k) condition, it is tested for the SLL*(k)
condition because LOOK} has linear time and space complexity. When no lookahead depth
separates p and g, AR o A% #0 for al 1<n<k, the pair is not SLLY(k) and SLL (k) must be
attempted; recall that the A, sets are computed by LOOK} computation. The information gained
from SLL (k) analysisis still of value. During SLL (k) analysis, rather than compute the set of k-
sequences that predict productions p and q, it is sufficient to search for the set of k-sequences that
are possibly in common; i.e. in the intersection A’ = AR A Af¥n. A coversthe set of all possi-
ble k-sequences that could render the pair non-SLL (k)-separable. By constraining the LOOK
computation to traverse only those edges that may lead to a common k-sequence, the typical com-
plexity of the computation can be reduced significantly. The *‘constrained’’ agorithm isgivenin
Figure 6.5.



106

function LOOK( p : Node, A : array of sets) returnstree of terminal;
begin
var t,u : treeof terminal;

if p=nil or k=0 then return nil;

if p.busy[k] then return nil;

p.busy[k] = true;

if p.edge; is-a-termina then begin
if p.edge; O Ay then

p.label
t= ! ; [* create tree with label asroot */
LOOK-1(p.edge;)
else
t=nil;
end;
else

t = LOOK(p.edge,);
u = LOOK(p.edge>,);
p.busy[K] = falseg;
if t=nil then return u;
elsereturnt - u; /* createtree with t,u assiblings */

Figure 6.5 Constrained S_L (k) LOOK, Algorithm on GLA

The input parameter A is the result of SLL(k) analysis and is an array comprised of A, for
1<n<k.

This constrained algorithm attempts to reduce the exponential behavior of the straightfor-
ward agorithm by pruning the size of the lookahead information, but, while the typical behavior
of this algorithm is good, it is till exponentially complex in the worst case; to compute all
LOOKy trees using the constrained algorithm, the worst-case time and space complexity is
O(|G ¥ x | T [¥) as per Section 4.10. The next section describes an algorithm that overcomes
the grammar-derived exponentiality, but still must contend with exponential lookahead informa-
tion size.

6.2.4 LOOKy Algorithm With Caching

The straightforward agorithm ignores both the grammar-derived and lookahead informa-
tion size exponentiaities while the constrained algorithm attempts to reduce the lookahead infor-
mation size. In this section, we present an algorithm that reduces LOOK, complexity by attack-
ing the grammar-derived exponentiality; results of its computations are cached for use by future



107

computations. A caching mechanism similar to that used by the LOOK} algorithm can be used
for this task. However, LOOK{ only had to store sets, but LOOK; has to save trees. Because
each decision can have O (| T |¥) lookahead k-tuples, this cache is extremely large in the worst-
case. Fortunately, thisworst case rarely appears for real grammars.

Cache entries consist of atree of terminals and a completion flag, where the completion flag
is true if the cache entry may be used directly; a completion flag of false implies that the entry is
areference to the cache entry of another nonterminal which isthe head of acycle. A cache entry
exists for entry and exit state of each nonterminal and for each lookahead depth. The LOOK
computation cache size in the worst caseiis, therefore, of size

kK
O(ZITI'xINJ)
i=2

wherethei =1 case is handled more efficiently by the LOOK? algorithm.

Figures 6.6, 5.14, and 5.14 comprise the caching LOOK algorithm; Figure 6.6 implements
the GLA recurrences given in Section 4.9.1 and is very similar to the cached LOOK{ algorithm in
terms of the caching steps. The only real difference lies in the computation of the lookahead
information itself.



108

function LOOK( p : Node, var cycle: nonterminal ) returnstree of terminal;
begin

var rt,u: treeof terminal;

var cycleq, cycle, : nonterminal;

cycle; = not-a-cycle;
cycle, = not-a-cycle;
if ( pis-node-with-cache) then return retrieve-from-cache( p, cycle);
if p.busy[k] then begin

cycle=p.rule

return nil;
end;
p.busy[k] =true;
if p.edge; is-a-terminal then begin

p.label

t= ! ; I* create tree with label asroot */
LOOK -1 (p.edge,cycleq)
if ( cycleq is-cycle-to-current-node ) then cycle, = not-a-cycle;
end;
else begin
t = LOOK(p.edge;,cycleq);
if ( cycleq is-cycle-to-current-node ) then cycle, = not-a-cycle;
end
u = LOOK(p.edge,,cycle,);
if ( cycle, is-cycle-to-current-node) then cycle, = not-a-cycle;
p.busy[k] = false;
if t=nil thenr =u;
dser=t - u; /* createtree with t,u assiblings*/
if ( pis-node-with-cache) then store-into-cache( r, p, cycleq, cycles );
returnr;
end LOOKy;

Figure 6.6 LOOKy Algorithm on GLA with Caching



109

Retrieving trees from the cache is done by searching for a complete cache entry in one of
three ways. Firgt, if the cache for a node, p, is nonempty and has a complete cache, return that
tree. If the cache is not complete, but is nonempty, the cache contains a single tree node which
points the nonterminal at the head of the cycle with p as a member; the cache entry for that non-
terminal at the head of the cycle may be used (if it is complete). Thirdly, if the cache for p is
empty, cache entries at larger values of k are sought as they contain a superset of the LOOKy
information; in general, the first n<k levels from the root of a LOOK| tree represents LOOK,,. If
no complete cache entry is found, the actual computation is attempted.



110

function retrieve-from-cache( p : Node, var cycle : nonterminal ) returnstree of terminal;
begin

var nt : nonterminal;

var node : Node;

if p.cache[k] not-empty then begin
if ( p.cache[k] is-complete) then return deep-dup-unique( p.cache[K] );
else begin
nt = imaginary-terminal-to-nonterminal ( p.cache[k] );
if ( pis-entry-node) then node = entry-node-of( nt );
€lse node = exit-node-of ( nt );
if ( node.cache[k] is-complete ) then
retur n deep-dup-unique( node.cache[K] );
else begin
cycle=nt;
return nil;
end;
end;
end;
elsebegin /* look for cache entries at higher values of k */
for i = k+1 to maximum-k-in-cache do begin
if ( p.cache[k] not-empty and p.cache[i] is-complete ) then
retur n bounded-deep-dup-unique( p.cacheli], k );
end;
end;
end retrieve-from-cache;

Figure 6.7 Cache Retrieval for Efficient S_L (k) LOOK



111

When atree is stored into the cache, the LOOK, algorithm returns only a reference to that
entry (a single-node tree which points to the cache entry) rather than making a complete copy of
the exponentially large tree. This allows a small amount of tree compression akin to common
subexpression elimination as future computations will have references to a cache entry rather
than a copy of the full tree. In most situations, however, deep, unique copies are made (reference
nodes are expanded to be copies of the trees referenced and terminals occur at most once at a k
level in the tree). LOOK is very fast when shallow, versus deep, copies are made because tree
areof sizeO(|T |¥), but, testing for C (k)-determinism is much slower due to the fact that it must
traverse many reference nodes before it discovers an actual terminal node. It is a tradeoff that
appears to favor making deep copies to save time later during nondeterminism detection.



112

procedur e store-into-cache(  var r : tree of terminal,
p : Node,
cycle; : nonterminal,
cycle, : nonterminal );
begin
var ¢ : nonterminal;

* cachethis set for use by other functions if complete */
if (cycleq, cycle, are-not-cycles) then begin
p.cache[k] =r;
r = reference-to(r);
indicate-complete( p.cache[K] );
return;
end

[* if part of cycle, cache only cycle tree entry pointing to cycle nonterminal */
if (cycleq is-cycleor cycle, is-cycle) then
begin
if (cyclelis-cycle) then c =cycleq;
elsec=cycle,;
p.cache[k] = tree-node( nonterminal-to-imaginary-terminal( c) );
indicate-incomplete( p.cache[k] );
end
end store-into-cache;

Figure 6.8 Cache Storage for Efficient SLL (k) LOOKy



113

The cached agorithm avoids the exponentiality derived from recursive grammars, which
cause redundant computations, but still encounters huge lookahead information trees. To com-
pute al LOOK, trees, the worst-case time and space complexity is O(|G | x k x | T |¥) as per
Section 4.10.

This section provided an example LOOK, computation that demonstrated how GLA’s are
traversed and how child-sibling trees are employed to store lookahead information. Three algo-
rithms were then presented that implement the recurrences in Section 4.9.1. The straightforward
algorithm has two exponential terms in its complexity: |G |k implies that the recursive nature of
grammars forces redundant computations and |T | reflects the worst-case size of lookahead
information. The constrained algorithm reduced the typical size of the lookahead information by
constraining its walk of the GLA. The caching algorithm attacked the grammar-derived exponen-
tiality by saving the results of computations. The straightforward and constrained |ookahead
computation algorithms require O(|G | x | T |¥) time and space complexity in the worst case;
the constrained algorithm may encounter situations in which the lookahead cannot be constrained
and, hence, has the same worst-case complexity as the straightforward algorithm. The caching
algorithm has the best time and space complexity of thethreeat O(|G | xk x | T [¥). The |G |
term has been reduced to |G | x k because of computation caching.

6.3 Testing for the SLL (k) Property

Testing a grammar for the SLL (k) property is very similar to testing for the SLL*(k) as
described in Section 5.13. As before, our approach involves computing SLL (k) lookahead sets
and then testing each grammar decision point for determinism. Previous work in this area did not
compute lookahead sets and is, hence, less practical when parser generation is the goal of gram-
mar analysis. Asaways great care is taken to avoid the exponentiality of lookahead information.

Recall the hierarchical approach of reducing lookahead computation complexity used by
algorithms in this thesis. First, only the lookahead sets that are needed to parse the language
described by the grammar are computed. Second, the lookahead depth, k, is modulated to use
minimum lookahead. Third, SLL*(k) computations, which are linear in k, are attempted before
full SLL (k) computations. Algorithms which examine lookahead information, such as the
S.L (k) determinism agorithm, request lookahead computations in this manner. This section
presents statistics concerning the relative efficiency (run time) of analyzing grammars and pro-
vides an algorithm for testing grammars for the SLL (k) property.



114
6.3.1 Characteristics of 9L (k) Determinism

This section presents statistics regarding the efficiency of testing grammars for the SLL (k)
condition and the SLL (k) condition. The SLL (k) algorithm uses a combination of LOOK} and
LOOK| computations.

The time complexity of testing for the SLL (k) property can be viewed as a function of the
number of LOOK operations and the amount of lookahead information which must be examined
for determinism. The caching mechanisms employed by our efficient grammar analysis ago-
rithms bound the number of LOOK operations on a state p to |G | x k— there are only k opera-
tions that are defined on each state and the results are cached for use by later requests for that
information. Hence, empirical studies should show that the average number of LOOK requests
per decision state is a linear function of k. Figure 6.9 shows that, indeed, when the number of
LOOK operations per decision state was averaged over 22 sample grammars, the number of
LOOK operationsis alinear function of k.

3]
Numbef | .
LOOK LOOKn
Ops 1 _| T
=777 LoOK,
0 -7
| | | |
1 2 3 4
n<k

Figure 6.9 Average Number of LOOK Operations per Decision for SLL (n) Determinism

Notice, for k=1, LOOK,, is never attempted because LOOK] is equivalent to LOOK ; (both
compute sets of terminals), but LOOK? is more efficient. The LOOK,, curve follows roughly the
function k/4, which suggests that, because most decisions are SLL (1), increasing the maximum
allowable k does not dramatically increase the number of LOOK requests at the maximum depth.
Nondeterministic decisions force the SLL (k) determinism agorithm to consider deeper and
deeper lookahead since it does not know whether the decisions is hondeterministic for any k or
merely that an insufficient amount of lookahead has been attempted.



115

The number of LOOK computations is a linear function of k, but the cost of each can be
exponential. Hence, the time needed to analyze a grammar for the SLL (k) property is exponen-
tial for k>1. On the other hand, testing a grammar for the S_L (k) condition (a covering approx-
imation to SLL (k)), is alinear problem. To strengthen our claim of practicality, we present Fig-
ure 6.10 that illustrates the amount of time needed to anayze SLL (k) grammars. We have
included the time for ANTLR (ANother Tool for Language Recognition) [PDC92], the LALL (k)
parser generator of PCCTS, to analyze the same sample grammars; ANTLR is awidely used and
considered practical, thus, providing a good benchmark. The SLL (k) algorithm uses a combina-
tion of LOOK} and LOOK, computations. Figure 6.10 demonstrates that SLL (k) is much more
efficient and is roughly linear whereas the SLL (k) analysis is exponential in k; SLL (3) is till,
however, very practical. The times were averaged over 22 sample grammars.

100
L) ¢
log scale 10
time
(sec) . ~ANTLRLALL (n)
SLL(n)
[ [ [ [ [ [
1 2 3 4 5 6
n<k

Figure 6.10 Average Analysis Time for SLL*(n), SLL (n), and LALL (n) Determinism

The ANTLR analysis curve does not include sample 14 as ANTLR could not compute LALL (2)
or LALL (3) for this grammar (program exceeded internal data structure constraints); also,
ANTLR does not terminate for LALL (4) for most of the grammars. The figure indicates that con-
strained LOOK(, is often very fast, but the grammar-derived nonlinearity becomes significant at
k=4, the cached LOOK| is exponential not in the grammar, but in the size of the lookahead trees
whereas the constrained algorithm manipul ates pruned trees.

This section demonstrated that the number of lookahead operations per decision state can be
reduced from an exponential to alinear function with computation caching. Unfortunately, each
computation can be exponentially large, but for small k, we have shown that C (k) parsing is still
practical.



116

6.3.2 Algorithm for Testing for the SLL (k) Property

Avoiding full LOOK, operations is the primary goal of grammar analysis. Since
S.LY(k) OSLL (k), if alookahead decision is SLL(K) it is also SLL (k) and need not be tested for
the SLL (k) property; hence, LOOK} operations are attempted first. When SLL(k) isinsufficient,
LOOK, operations must be computed. The algorithm to test a grammar for the SLL (k) property
is presented in Figure 6.11. It isidentical to the algorithm for SLL* (k) except that, upon reaching
the maximum lookahead depth without having separated the production pair, full SLL (k) deter-
minism is examined, whereas, the SLL(k) algorithm would report a nondeterminism at this
point.



117

proceduretestSLL( rule: nonterminal, max_k : integer );
begin
k=1;
p = first-production-of rule;
while p # nil do begin
f; = LOOK(p.edgey);
q = p.edgey;
while g # nil do begin
f, = LOOKE(g.edge; );
while f; A f, # 0O do begin
N=F1n f2
if k=max_k then testFullLL (p,q,k, A\);
else begin
k=k+1;
f, = LOOK(p.edgey);
f, = LOOK(q.edgey);

end;
end;
q=g.edge;;
end;
p = p.edgez;
end;
end testSLL;

Figure 6.11 Algorithm on GLA to Test SLL (k) Determinism



118

Only the non-SLL *(k) production pairs in a decision point are examined for SLL (k) property; if
the other pairs are SLL (k) they are trivially SLL (k). Although it is not performed by this ago-
rithm, when |A; | =1 for i =1..k-1, no artificial tuples are generated by the A compression and,
hence, computing full SLL (k) information is unnecessary.

Just as the results of SLLY(k) analysis can be used to reduce the complexity of SLL (k)
analysis (see Section 6.16.3 on the constrained LOOK,, algorithm), SLL*(k) lookahead informa-
tion can be used to reduce the complexity of testing two productions for the S_L (k) property.
The A; sets, which are the intersection of LOOK?(p) and LOOK(q), are computed for each loo-
kahead depth i; the information is used by the testFullSLL procedure to reduce the amount of
time required to test for the SLL (k) property. The algorithm to test a production pair for the
SLL (k) property isgivenin Figure 6.12.

proceduretestFullSLL( p,q : Node, k : integer, A : array of sets);
begin
if k>1then begin
f1 = LOOK(p.edge;);
f, = LOOK(g.edge,);
end;
for n=2tokdo begin
t = permutation( A, n);
whilet £ nil do begin
if tree-member( f4,t, n) and tree-member( f,, t, n) and n=k then
report-nondeterminism;
t = permutation( A, n);
end;
end;
end testFullSLL;

Figure 6.12 Algorithm on GLA to Test for SLL (k) Determinism

The function permutation(/\,n) used by testFullSLL returns a new lookahead n-string (tree
of depth n with n elements) from the lookahead space covered by A; ... Ay. The tree-
member(f,t,n) function returns true if lookahead string t is a member of tree f up to a depth of n
elseit returnsfalse.

Because SLL1(1) is equivalent to SLL (1), nothing is done by testFullSLL when k=1. For
k>1, LOOK is generally requested for both productions of the production pair. Testing for the
S L (k) property is asimple matter of testing all permutations of length n in the A sets against the
first n levelsin the lookahead trees. Only those n-tuples appearing the the A sets are attempted as
the A sets cover the intersection of the lookahead trees for productions p and g, thus eliminating a
large number of unnecessary comparisons. Any lookahead n-tuple that p and g have in common
is covered by the A\ set.



119
6.3.3 Complexity of Testing for the SLL (k) Property

The space complexity of testSLL is the same as testSLL*, but with the additional space
required for testFullSLL, which in turn requires space for LOOK, computations. Space complex-
ity of testSLL is, therefore, dominated by that of computing LOOK} and LOOK, information,
which totals to O(|G|xkx |T|+ |G| xkx |T|X) as per Section 4.10, or simply
O(|G | xkx |T1".

To establish the worst-case time complexity of testSLL, we recall that the time complexity
of testSLLY isO(|G | xk x | T |) which will be the same for testSLL without the time needed to
perform testFullSLL. The time required to compute all full S_L (k) lookahead information is
O(|G| xk x |T|) as per Section 4.10. Turning to the examination of the lookahead, we
observe that the outer loop of testFullSLL performs k-1 iterations and tests permutations of A,
looking for the minimum k which separates the two productions. The number of permutations
possible for A, is |T |¥ in the worst case (A; O T); hence, the inner loop could iterate O (| T [)
times. Each permutation of length n is tested against the lookahead trees for p and g, which
requires time proportional to the tree size; this could be reduced to O (n) by representing the trees
as DFA’s for determinism testing purposes. Time to perform the lookahead examination portion
of testFullSLL for one production pair is then O(|T |¥** x k). In the worst case, each nontermi-
nal and each production pair of the nonterminal, needs testFullSLL yielding a time complexity,
including the cost of lookahead computation, of

2
0(|G|xkx|T|k+|N|x[%] X T xk)

where

Qi

is the average number of production pairs per nonterminal (|P |/|N | isaconstant less than eight
normally in practice). Therefore, time complexity for al |N | invocations of testSLL plus the
time for al possible invocations of testFullSLL is

P2

O(IG | xkx [T+ |G| xkx |T|“+ IN]

X |T|k+l Xk)




120
Simplifying, we obtain

P2
IN|

O(IG | xkx |T|*+ x| T xk)

which is roughly O(|G | xk x|T |k+1). By improving the strategy by which we compare k-
strings  against  lookahead  trees, the  complexity <can be reduced to
O((IG | + [P IZ/IN[)xkx|T[%).

This section explored a method for testing grammars for the SLL (k) property. Our
approach resolves as many decisions as possible with SLLY(k) lookahead, but failing that,
employs full SLL (k). In either case, the minimum necessary lookahead depth is used. We pro-
vided statistics demonstrating that the number of requests for lookahead by our SLL (k) determin-
ism algorithm is alinear function of k. Although, each LOOK| request is exponentially complex,
the number of grammar constructs that require LOOK, computations is small and, hence, our
method of 9L (k) analysis has atypical execution time that is practical as shown by Figure 6.10.

6.4 SLL (k) Parser Construction

Constructing SLL (k) parsers is a process of computing induces relations, constructing
heterogeneous decision states, and building executable programs that implement the heterogene-
ous states. This section describes how information from induces relations can be reduce in size
and represented as heterogeneous decision states. We present a number of different executable
decision state implementations followed by two example parser constructions.

6.4.1 Lookahead Information Compression

L ookahead information for conventional SLL (k) decisions has space complexity O(|T |k).
This exponentiality can be reduced by using the minimum possible lookahead depth, k, and by
employing SLL*(k) decisions whenever possible. In the event that SLL (k) is insufficient, full
SLL (k) decisions must be constructed. However, heavy compression is possible even for these
decisions.

Consider the generic S_L (k) induces relation in Table 6.3 where m is the number of pro-
ductions of A and k is the minimum necessary |ookahead.



121

Table 6.3 Generic SLL (k) induces Relation for Nonterminal A

Lookahead (14, ..., 1) O TK Action
LOOKK(A - eqQy) predict A - a,
LOOK (A - ea5) predict A - a,
LOOK(A - eqay,) predict A - Oy

Using an SLL (k) decision offers the most significant reduction because SLL (k) lookahead deci-
sionshavesize O(|T | x k). The generic SLL*(k) induces relation is shown in Table 6.4.

Table 6.4 Generic SLL (k) induces Relation for Nonterminal A

Lookahead 14, ..., o O T,T, ..., T Action

LOOK}(A = eqy), .., LOOKE(A - eqa;) | predict A = oy
LOOKI(A - easy), ..., LOOKE(A - ea,) | predict A - ay

LOOK}(A - eqy), ..., LOOKE(A = eqay,) | predict A - ap,

When an SLL*(k) decision is not possible, SLL (k) must be used. To compress full SLL (k) infor-
mation, we consider when SLL*(k) decisions are insufficient: SLL*(k) decisions are insufficient
when an artificial lookahead k-string for a production, created by SLL (k) compression, collides
with areal tuple from another production’s LOOK, set. A SLL*(k) decision can be augmented to
test for the ‘‘offending’’ k-strings as a special case, thus, resolving the nondeterminism; this
hybrid decision is an S.L (k) decision because it uses k-tuples, but has much smaller space
requirements than the conventional S_L (k) decision in practice.

In general, for any production pair A - a and A - 3, the number of rea tuples from
LOOK (A — ep) that collide with artificial tuples resulting from LOOK!(A — eq) for 1<1<k is
smaller than the full LOOK, (A - ea) set. As the degenerate case, when SLL (k) reduces to
S.L1(k), the number of real tuples from LOOK, (A — ep) that collide with artificial tuples from
LOOK(A - ea) for 1<i<k is zero. On the other extreme, every rea tuple from
LOOK (A — ) could collide with artificial tuples from LOOK!(A - ea) for 1<i<k, which
renders the two productions purely SLL (k) separable; a hybrid decision for these two productions
isfutile as only k-tuple comparisons are sufficiently powerful.



122

Computing a discriminant (separating) function for predicting productions A - o and
A - Bisdone by computing the A (A, d, B) and Ag(A, B, a) discriminant k-tuple sets, which are
the artificial tuplesfrom A - a that collide with real tuplesof A - 3 and vice versa. Define

A(A, a, B) = LOOK(A - eB) n artificia-tuples( A% )

with

A% ={ LOOK}(A - ea), LOOK}(A - eq), ..., LOOKE(A — eq) }fP

and

artificial-tuples( A® ) =tuples (A% ) —= LOOK(A - e0)

where the function *‘tuples’’ returns the set of k-tuples generated by permutations of the A; sets
and ‘‘artificial-tuples’’ is the set of tuples generated by the A; sets, but which do not correspond
to valid lookahead k-tuples.

Decision states for nonterminals with only two productions, A - a and A - 3, are then
easily constructed viathe template in Figure 6.13.

upont; OA§ andt, OAS and ... and 1 O Af and (14, T, T3) I A(A, a, B) predict A - a;
upont; OAR and 1, OAB and ... and 1 O AL and (11, 15, T3) T A(A, B, o) predict A - B;

Figure 6.13 Hybrid State for Nonterminal with Two Productions

When both A, are O, the decision state reduces to an SLLY(k) state. When
A(A, a, B) =LOOK(A - o) and A(A, B, a) =LOOK(A - e0), the decision is a purely
SLL (k) decision; it reduces to that in Figure 6.14 wherethe ** (11, To, T3) 1 A’ expressions have
been replaced by the appropriate LOOK|, sets.



123

upon (T4, Tp, T3) O LOOK(a) predict A - a;
upon (14, Tp, T3) O LOOK(B) predict A - B;

Figure 6.14 Purely SLL (k) State for Nonterminal with Two Productions

The use of A discriminant sets is advantageous in practice, but can perform unnecessary
tuple comparisons in the worst case. Consider the maximum size of the discriminant tuple sets.
Lemma6.1: For any production A — a;, | [] &(A, o, a;) | < | [] LOOK(a;) |-

] ]
Proof:
By definition Ag(A, aj, a;) = LOOK(A — eq;) n artificia-tuples( A® ), which is clearly no
larger than LOOKy(A — ea;). Hence, the combined size of al A sets is no greater than the
combined size of all LOOK sets. Because A(A, aj, aj) = U, the combined size of the A sets is
strictly smaller than the combined size of all LOOK sets.
O

Lemma 6.1 indicates that, when there are exactly two alternative productions that are not SLL (k)
separable, the use of discriminant sets is always beneficial; the A sets can be no worse that doing
tuple membership operations with LOOK sets. In the extreme, all m productions for a nontermi-
nal are non-SLL (k) separable; each prediction expression would be bounded by the combined
size of al LOOK sets. Therefore, worst-case, the hybrid SLL (k) decision state with m aternative
productions is m times as large as a normal SLL (k) (ignoring the relatively small cost of doing
the m x k set comparisons). The break-even point occurs when the combined size of the required
A sets equals the combined size of the m LOOK sets. In practice, Ay sets are much smaller than
LOOK| sets because the lookahead overlap between alternative productions is typically low.

The relationship between SLL (k) states and SLL (k) Ay sets is characterized by Theorem
6.1.
Theorem 6.1 if A-a and A-q; ae S.LY(k) separable, then A(A, aj, aj) =
A(A, aj, a;) =0 for somei and j.



124

Proof:

For two productions to be SLL(k) separable, Al, and AJ, must be disjoint for some lookahead
depth n<k by Lemma 6.1. This implies that there are no real or artificial tuples in common
between the lookahead sets for both productions. Hence, there can be no real tuples derived from
A - q; that collide with artificia tuples derived from A — ao; O Ac(A, a;, a;) =0. Similarly,
there cannot be areal tuple derived from A - q; that collides with an artificial tuple derived from
A-a; O A(A, aj, a;)=0.

O

Theorem 6.1 provides sufficient conditions for an SLL (k) state construction algorithm to avoid
computation of A discriminant sets. In effect, the Theorem 6.1 and Lemma 6.1 suggest that
S.LY(k) should be attempted before SLL (k) and, further, when SLL (k) is required, hybrid
SLLY(Kk)/SLL (k) states should be constructed as they are typically smaller than equivalent normal
SLL (k) states; hence, SLLY(k) analysis is performed for every decision point in the grammar,
never having been done unnecessarily.

Given anonterminal, SLL (k) heterogeneous state construction is accomplished via the algo-
rithm in Figure 6.15.

procedur e constructSLL( A : nonterminal, A : array of sets);
begin
add ‘1, OAY and1,0AS and ... and 1, O A7 to prediction expression for A - a;
add 'ty OAL and 10 A2 and ... and Ty DAY to prediction expression for A - a;;
for each non-SLL*(k) production pair A - a; and A — a; begin
f1 =LOOK(A - eq;);
fo = LOOK\(A - eqj);
n = minimum |lookahead depth such that productionsi and j are SLL (n) separable;
dl = “(Tlv T2, T3) 0 An(Av ai, aj)”;
d2 = “(Tlv T2, T3) 0 An('A‘v aj! Gi)”;
add d, to prediction expression for A - q;;
add d to prediction expression for A - a;;
end;
end constructSLL;

Figure 6.15 Algorithm on Grammar to Construct SLL (k) Decision States

The construction algorithm assumes no order of testing when computing the prediction
expressions; i.e. each expression is completely self-contained and does not require the results of
previous tests. Although this can be a necessary feature for many implementation algorithms, a
much smaller state can be constructed if the expressions are executed in a particular order. For
example, if the expressions are guaranteed to execute first to last, then the expression for produc-
tion A - a; has no need to examine the A (A, a;j, ;) for j=1..i=1. Further, they do not need to



125

be computed by the construction algorithm, which increases grammar anaysis speed; even if
computed needlessly, a decision state implementation mechanism can simply ignore the
unneeded A sets.

6.4.2 Implementation of Heterogeneous Decision States

Lookahead decision implementations can be categorized as either mrary or non-m-ary
where an mary implementation maps a terminal lookahead sequence to one of m induces pro-
duction predictions using a single prediction expression and are of the form M[t4,...,T,] where
n<k and M maps the lookahead to a unique production. On the other extreme, a series of mtests
(prediction expressions) can be made, one for each production, to see which production is
predicted by the current lookahead buffer. Table 6.5 summarizes the popular m-ary decision
implementation technigues.



126

Table 6.5 Implementation Strategies for m-ary Lookahead Decisions

Table[ty, ..., T] | This is the obvious solution, but has huge space requirements,
which incidentally, is what probably led others to consider k>1
lookahead impractical. Even sparse-matrix and table compression
techniques can be large or impractically slow. This technique has
time O (k) and space O (T) without compression.

Hash table | This technique holds much more promise than a straight table, but
can aso require large tables to obtain good performance. An
interesting direction in this area is perfect hashing techniques
which might be applied to good effect. This technique has time
O (k) and the space requirements can reach O(TX) in the worst-
case.

Token renumbering | This method temporarily remaps terminals to different values to
obtain set of hyperplanes, simple, non-overlapping regions are
created in tuple space. Computing aterminal translation mapping
could be expensive, but a simple relational operator could be used
to predict productions. This technique has time O (k) and space
O(|T |¥) at parser run-time (if aterminal remapping exists).




127

These techniques are not feasible for SLL (k) due to exponential |ookahead space requirements. If
a series of tests is made, the size of alookahead decision state can be dramatically reduced at the
cost of a small reduction in parser speed. Table 6.6 summarizes a few of the options in non-m-
ary decision implementations.



Table 6.6 Implementation Strategies for Non-m-ary L ookahead Decisions

Decision tree

Using a (nearly balanced) decision tree can be used to make an
logm mapping. To use this method, an ordering must be
established to alow traversal of the tree. This method has time
complexity O(log m) and space complexity of O(logm x |T |k).
Note that atree would roughly the same as a lookahead DFA.

Seriesof Tests

As with the decision tree, a series of tests can be much cheaper
than a single decision. On average, this implementation is O (m)
because most decisions are SLL (1) where m is the number of
productions for a nonterminal. This decision mechanism is trivial
to construct. No ordering is necessary for this method to find the
correct production. Tests can be smpler than the tree method
because more tests are performed on average. This method has the
additional benefit that the productions with highest frequency of
application can be specified first to decrease average prediction
time. Also, each test in the sequence may use a different
lookahead depth. Timeis O(m x |T [) in the worst case, but the
hybrid SLL *(k)/SLL (k) mechanism can be used as described.

128



129

For SLL (k), mrary tests are infeasible because the hybrid SLL*(k)/SLL (k) states, which
appear to be the best way to build practical SLL (k) parsers, are not simple k-tuple to action map-
pings. On the other hand, one could build small hash tables to test for A set membership. In our
experience, gained mainly from PCCTS, full SLL (k) decisions are rare and of those full SLL (k)
decisions, the A sets are few and small — hash tables are overkill. Therefore, aswith SLLY(k) we
advocate a series of tests rather than one of the mrary decision mechanisms and employ
recursive-descent parsers because of their flexibility.

6.4.3 Example SLL (k) Parser Constructions

We introduce recursive-descent parser construction via grammar Grammar G6.3.

A - B
A - ad
B . ab G6.3
B - cd

The SLL(2) inducesrelation is given in Figure 6.7.

Table 6.7 S_L1(2) induces Relation for Nonterminal A in Grammar G6.3

Lookahead 11,1, O T, T Action
{a,c} {b,d} predict A - B
{a} {d} predict A - ad

The two productions of A are not SLL*(2) separable because no single lookahead depth can be
used to distinguish between the productions. A parser-generator must then turn to SLL (2). The
appropriate hybrid state, as computed by constructS_L, is given in Figure 6.16.



130

upon 14 O{a,c} andt, O {b,d} and (11, T2) # (a,d) predict A - B;
upont; =aand 1, =d predict A - ad;

Figure 6.16 Hybrid SLL (k) State for Nonterminal A of Grammar G6.3

The A,(A, ad, B)=0 is not included for the second prediction expression as there are no
artificial tuples generated by A% = {a} {b}. A recursive-descent procedure that would imple-
ment nonterminal Aisgivenin Figure 6.17.

procedureA;
begin
if T O{a,c} and 1, O {b,d} and (11,T5) # (a,d) then begin
B;
end;
elseif 1y =aand 1, = d then begin
MATCH(a);
MATCH(d);
end;
end A;

Figure 6.17 SLL (2) Implementation of A for Grammar 6.3

As mentioned above, the order of prediction expression evaluation can reduce the size of a parser.
Figure 6.18 shows a functionally equivalent, but smaller parser.



131

procedureA;
begin
if 1, =aand 1, =d then begin
MATCH(a);
MATCH(d);
end;
eseif 14 O{a,c} and 1, 00 {b,d} then begin
B;
end;
end A;

Figure 6.18 Alternate S_L (2) Implementation of A for Grammar 6.3

Because the specia case of tuple (a,d) has already been tested for in the first prediction expres-
sion, the second does not need to consider it. To reiterate, the i™ prediction expression need not
consider A sets associated with productions 1..i —1.

Asamore complicated example, consider Grammar G6.4.

A-B
A-C
B - ab
B - cd G6.4
C-a
C-yb
C - cx

Table 6.8 9L (2) induces Relation for Nonterminal A in Grammar G6.4

L ookahead (11,T,) O T? Action
(a,b) predict A - B
(c,d) predict A - B
(a,d) predict A - C
(v,b) predict A - C
(c,x) predict A - C




132

Table 6.9 SLL1(2) induces Relation for Nonterminal A in Grammar G6.4

Lookahead 1,,T, U T, T Action
{a,c},{b,d} predict A . B
{a,y,c}.{b,d,x} predict A - C

The set of artificial tuplesfor A — Bis{(a,d),(c,b)} and{(a,b),(a,x),(y,d),(y.x),(c,d),(c,b)} for
A - C. There are three collisions to worry about: A Real tuple for A - C, (a,d), collides with
an artificial tuple for A - B, both valid tuples for A . B collide with artificial tuplesof A - C,
and both productions have (c,b) as an artificial tuple.

upon 14 O{a,c} andt, O {b,d} and (14, T2) # (a,d) predict A - B;
upon 14 O{a,y,c} and 1, O {b,d,x} and (11, T5) 1 {(a,b),(c,d)}) predict A - C;

Figure 6.19 Hybrid State for Nonterminal A in Grammar G6.4

A recursive-descent implementation procedure for nonterminal A is provided in Figure 6.20.

procedureA;
begin
if 1y O{a,c} and 1, O {b,d} and (11, T2) # (a,d) then begin
B;
end;
dseif 14 O{a,y,c} and 1, O {b,d,x} then begin
G
end;
end A;

Figure 6.20 Hybrid SLL*(2)/SLL (2) Implementation of A for Grammar 6.4

Notice that the special casetest *‘ (14, To) [ {(a,b),(c,d)}"’ is unnecessary due to the prediction-
expression order of execution.



133

This chapter described how SLL (k) parsers may be constructed. The main principles
behind S_L (k) parsing have long been understood from a theoretical point of view, but little
practical work has been done because SLL (k) parsing was considered intractable. We have
demonstrated the practicality of SLL (k) lookahead computation, testing grammars for the SLL (k)
property, and constructing SLL (k) parsersfor k>1.

Section 6.16 provided three algorithms for computing SLL (k) lookahead information that
implement the recurrencesin Section 4.9.1. The lookahead for a particular position, p, in agram-
mar is computed by walking the associated GLA collecting the non-€ edges along paths emanat-
ing from the GLA state created for position p. The straightforward algorithm had two exponen-
tial terms in its complexity: |G | from the recursive nature of grammars, which forces redun-
dant computations, and |T |" from the worst-case size of lookahead information. The con-
strained algorithm reduced the typical size of the lookahead information by constraining its walk
of the GLA to only those paths that can possibly lead to k-strings in common between produc-
tions. The caching algorithm removed the grammar-derived exponentiality by saving the results
of computations. The straightforward and constrained lookahead computation algorithms had
O(|G |* x | T [¥) time and space complexity in the worst case whereas the caching algorithm had
O(IG | xkx |T[").

Section 6.17 described how grammars may be tested for the SLL (k) property by comparing
the lookahead information of each production. By minimizing the lookahead depth, k, and by
first testing for the SLL*(k) property, the time and space necessary to test grammars for the
S L (k) property can be reduced significantly. In the worst case, our approach is dominated by
the time required to compute the lookahead information and can be implemented in time and
space O (|G | xk x|T 1Y)

Section 6.18 detailed the construction of practical SLL (k) parsers for k>1. We relied on
heavy lookahead-information compression to avoid the worst-case space requirement, O (| T |¥),
of the lookahead information. Just asin SLL (k) property testing, the minimum lookahead is used
and SLL1(k) decisions are used before resorting to SLL (k). Our compression techniques apply
equally well to al C (k) parsing strategies.



134

CHAPTER 7 LALL (K), LL (k), SLR(K), LALR(k), AND LR (K)

The previous chapters introduced new ways to represent lookahead information and gram-
mars, provided means of computing strong lookahead information, presented algorithms that test
grammars for the SLL* (k) and SLL (k) property, and described methods for constructing SLL *(k)
and SLL (k) parsers. The strong class of LL (k) parsers was emphasized because the lookahead
computation and parser construction mechanisms are the simplest, yet still effectively demon-
strate the important issues in the proposed construction methods. In this chapter, we explore the
other variants of LL (k) and outline how LR(K) and its variants can take advantage of the tech-
niques emphasized in this thesis. Further, we generalize these parsersto LL (k) and LR™(Kk).

We begin by finishing off the LL (k)-based classes. The first section describes LALL (k)
[SIS82], which is perhaps the most useful of the LL (k) classes. With little modification, the
3L (k) algorithms can be applied to LALL (k). The second section describes full LL (k). The
linear approximation to LL (k), LL1(k), is of little use during grammar analysis, but proves very
useful during decision state construction as a compression technique. The remainder of the
chapter discusses the LR(k) variants beginning with SLR(k). The fourth section demonstrates
that the LOOK,, and LOOK{ computations given for SLL (k) may be used directly for SLR(K).
The fifth section shows how LALR(K), like LALL (k), can use the techniques of linear |ookahead
approximation to reduce decision state size. The sixth section describes full LR (k) and how, like
full LL (k), LRY(k) analysis is not useful except for decision state compression. Finally, we
present the generalized parsers of LL™(k) O LL (k) and LR™(k) O LR(k), which use lookahead
decisions whose largest unit of comparison is an mtuple for m=k.

7.1LALL (K)

LALL (k) lies properly between the S_L (k) and LL (k) class of grammars [SiS82]; ANTLR
employs such parsers [PDC92]. LALL (k) is analogous to the LALR (k) class of grammars — the
parser resulting from the merging of all states of common core. Just as LALR (k) parsers have the
same number of states as SLR (k) parsers derived from the same grammars, LALL (k) parsers have
the same number of statesas SLL (k) parsers. The differenceliesin the accuracy of the lookahead
information. As a result, testing for the LALL (k) property is identical to testing for the SLL (k)
property except that the LOOK, and LOOK}: computations will return LALL (k) lookahead infor-
mation, which is a subset of the S.L (k) lookahead information. Parsers are constructed in



135

exactly the same manner as SLL (k) parsers, but again, using the more accurate LALL (k) looka-
head information. Hence, this section merely provides the modifications to the SLL (k) LOOK
algorithms necessary to compute LALL (k) information. We begin by describing the difference
between SLL (k) and LALL (k) lookahead.

When 9L (k) analysis reaches the exit state of some nonterminal, A, in a GLA, it proceeds
to compute the LOOK of all arcs emanating from the exit state. These FOLLOW-links point to
the states following each reference to A in other nonterminals states. Hence, SLL (k) analysis
combines the results of all FOLLOW operations when, in reality, at most one nonterminal can
reference A at atime; SLL (k) is a covering approximation to the real lookahead information.
S L (k) analysis is said to use context-insensitive FOLLOW information whereas LALL (k) and
LL (k) analysisis said to use context-sensitive FOLLOW information. Two things can be done to
improve the accuracy of 9L (k) lookahead. First, when computing LOOK,(A — o eBp),
LOOK,, (A - aB e[) can be used rather than FOLLOW(B) if B does not aways generate n-
strings where n'sn.  Second, prediction expressions of a honterminal’s productions can be made
dependent on the context of the reference to that nonterminal; aternatively, the normal LL (k) to
S L (k) conversion can be used, which makes nonterminal references unique by duplication.
LALL (k) embodies the first improvement and LL (k) incorporates both.

LALL (k) lookahead is more easily seen by example. Consider Grammar G7.1, which is
LALL (2), but not SLL (2).

A - aBc
A - ad
A-C
B-b
B -
C - cBd

Gr7.1

The partial SLL (2) inducesrelation isshownin Table 7.1.



136

Table 7.1 9L (2) induces Relation for Nonterminal A in Grammar G7.1

Lookahead (1;,T,) O T? Action
(a,b) predict A - aBc
(a,c) predict A - aBc
(a,d) predict A - aBc
(a,d) predict A - ad
(c,b) predict A - C
(c,c) predict A - C
(c,d) predict A - C

Because (a,d) predicts both productions one and two of A, the SLL (2) induces is inconsi stent.
However, the sequence ad can never be generated by A — aBc; the SLL (k) lookahead informa-
tion is a covering superset of the actual lookahead. Tuple (a,d) arises from the fact that the
S.L (2) analysis combined the symbols following al referencesto B. Infact, when called from A,
B can only be followed by terminal ¢c. The LALL (2) (and LL (2)) induces relation has the correct
predictions; it isshown in Table 7.2.

Table 7.2 LALL (2) induces Relation for Nonterminal A in Grammar G7.1

Lookahead (11,T,) O T? Action
(a,b) predict A - aBc
(a,c) predict A - aBc
(a,d) predict A - ad
(c,b) predict A - C
(c,d) predict A - C

LALL (2) lookahead information is smaller and more accurate than S_L (2) lookahead, but comes
at the cost of more complicated LOOK, and LOOK} algorithms.

To compute the more accurate LALL (k) lookahead sets, two modifications to the LOOK
algorithms can be used, both of which, reduce the utility of the cache. The first is simpler, but
makes caching exceedingly complicated and, thus, less attractive. It involves enabling and disa-
bling the FOLLOW-links emanating from the nonterminal exit states. Unfortunately, the exit
state caches would have to contain entries for each context in which the associated nonterminal
could be referenced — an impractically large cache. The second method is alittle more difficult,



137

but maintains a relatively straightforward caching mechanism. This modification requires a new
lookahead tree node type and has caches only in the nonterminal entry states.

We describe the second LALL (k) method by altering the uncached SLL (k) LOOK, algo-
rithm. Before LOOK attempts to traverse an €-arc in the GLA, resulting from a nonterminal
reference, the exit node for that referenced nonterminal is marked as busy (the state of the busy
flags is, naturally, saved before being marked). In this way, the LOOK, algorithm will not
traverse any FOLLOW-links for nonterminal references; LOOKy will only compute the FIRST in
this case. If LOOK| reaches the busy exit state, a special €, node is deposited in the tree in place
of the actual FOLLOW subtree. This g, node is to be distinguished from the € edgesin the GLA;
it is a place holder that indicates that LOOK,, must be initiated on the GLA state following the
nonterminal reference state. In this way, the context-sensitive FOLLOW is computed. There
may be many €, nodes in the lookahead tree returned by a LOOK, invocation and the algorithm
must replace each instance with the appropriate subtree. Upon returning from the g-arc computa-
tion, LOOK(p.edge;) computes LOOK,(p.follow) for each €, node. Edge p.follow is the node
where parsing would continue after recognizing the nonterminal pointed to by p.edges; i.e. for
A - o e B e [3 p.follow is the edge from p, the node created for position e, to the node created
for position e,. The modified algorithm is presented in Figure 7.1.



function LOOK( p: Node) returnstree of terminal;
begin
var t,u: treeof terminal;
b : boolean;
e: Node;

if p==nil or k==0 then return nil;
if p.busy[k] then return nil;
p.busy[Kk] =true;
if (p.edge; is-atermina )

p.label

t= ! : I* make label root of what follows */

LOOK-1(p-edges)
else begin
e = exit-state-of-nonterminal -referenced(p.edge);
b = e.busy[k];
e.busy[k] =true;
t = LOOK(p.edge,);
e.busy[k] = b;
for each €, node, g, int do
replace-node-with-tree(q, LOOK,, (p.follow));
end
u = LOOK,(p.edge>);
p.busy[K] = false;
if t==nil then return u;
dsereturnt - u; /* tuaresblingsintree*/

Figure 7.1 LALL (k) LOOK, Algorithm on GLA

138



139

The LOOK,(p.follow) computation may itself be barred from computing the FOLLOW if the
current nonterminal itself was referenced by another. In general, only the LOOK, computation at
the root of the recursive computation tree will be allowed to enter the exit state for the associated
nonterminal, thus, computing a global FOLLOW only in this case. LL (k) parsers solve this prob-
lem by splitting states. For example, LOOK(B — eb) from Grammar G7.1, when not invoked
from another LOOK, enters the exit state for B and effectively computes FOLLOW(B) = {c,d}.
LL (k) analysiswould treat ¢ and d separately asthey occur in different contexts.

Caching the results of the LALL (k) LOOK( is done by saving the results of LOOK(p) in
p.cache[k] where p isthe entry GLA state of some nonterminal; if that particular LOOK| is at the
root of the computation tree, the results are not cached as the lookahead tree will contain FOL-
LOW information. Therefore, only the FIRST of a nonterminal is cached (g, nodes included).
The LOOK| information does not contain FOLLOW information as it is afunction of context; for
any nonterminal the number of situations in which it can be referenced is exponentialy large.
Caching LOOK| for exit states is prohibitively expensive and is not done. Surprisingly, this lim-
ited caching mechanism does not render the LALL (k) algorithm impractical; e.g., ANTLR, the
parser generator of PCCTS, does not cache LOOK| information at all as it employs a constrained
LOOK algorithm similar to that of Section 6.16.3.

Although lookahead trees are smaller during LALL (k) analysis, the lack of FOLLOW caching
probably leaves SLL (k) analysis faster, albeit less accurate. The constrained LOOK algorithms
cannot cache results as they compute lookahead information that is restricted to a subset of the
real lookahead; however, since the constrained approach avoids a large number of the LOOK
computations, it proves practical. Formally, LALL (k) parsers, resulting from this improved
analysis, are superior to SLL (k) parsers.

Theorem 7.2: SLL (k) O LALL (k) O LL (k) for k>1[SiS90].

In summary, LALL (k) analysis computes more accurate lookahead than SLL (k) analysis by
using context-sensitive versus context-insensitive FOLLOW information during LOOK computa-
tions for nonterminal references. LALL (K) parsers are typicaly smaller than SLL (k) parsers and
have greater recognition strength; all of the S_L (k) parser construction mechanisms are immedi-
ately applicable to LALL (k) parser construction. The associated analysis algorithms are only
dightly more complicated and are, perhaps, a bit slower; the linear approximation methods,
LOOK¢, may still be applied to reduce analysistime. We conclude that LALL (k), which is nearly
LL (k), should be employed for parser generators designed for widespread use. We observe,
finaly, that the one situation in which LALL (k) analysisisidentical to SLL (k) analysisis the spe-
cial casewhich renders LALL (k) weaker than LL (k).



140

7.2 LL (K)

The LALL (k) parsers, described in the previous section, differ from SLL (k) parsersonly in
the lookahead information; i.e. LALL (k) analysis yields more accurate lookahead sets. As a
result, methods used to test grammars for LALL (k) property and methods for constructing
LALL (k) parsers are identical to the SLL (k) techniques. LL (k) parsers, on the other hand, are
exponentialy large, have more complicated analysis and construction algorithms, and are typi-
cally unable to use the linear approximation methods during analysis. LL (k) parsers are impracti-
cal for these reasons, but nonetheless we describe, for completeness, how LL (k) differs from
LALL (k) and how the linear approximation techniques described throughout this thesis can be
applied to reduce lookahead decision state size.

In general, LALL (k) lookahead computations only yield lookahead sequences that can be
generated by application of the production to be predicted. However, when predicting a produc-
tion of some nonterminal A that can generate strings shorter than the required lookahead, the
symbols following referencesto A must be used in the prediction. Determining which symbols to
include can only be determined at parser run-time because it depends on the context in which A
was invoked. During analysis only the set of possibilities is known. If there arer referencesto A,
then at least r distinct lookahead sets must be available to predict the production; in general, the
number of contexts is an exponential function of the grammar size. The parser state (context)
will determine which of the lookahead sets to use when A is invoked. LALL (k) (and SLL (k))
analysis merges al of the possible following terminal sequences and, hence, do not use context to
predict productions at parser run-time; thisisthe source of LALL (k)’sinferiority to LL (k).

The improved analysis of LL (k) can be incorporated into parsers by having multiple copies
of the states that predict the productions of A— one copy for each context. Another method,
which is effective for recursive-descent implementations, requires each procedure to define a
parameter that represents the context in which the procedure wasinvoked. A third method, which
operates on the grammar, makes each nonterminal reference unique by duplication and then
applies 9L (k) analysis; see [FiL88]. For our purposes, we choose a recursive-descent imple-
mentation to demonstrate this improved lookahead scheme.

Consider Grammar G7.2 whichisLL (2), but not LALL (2).

A - xBa

A-C

B-b G7.2
B -

C - yBba

The LALL (2) inducesrelation nonterminal B of this grammar isgivenin Table 7.3.



141

Table 7.3 LALL (2) induces Relation for Nonterminal B in Grammar G7.2

Lookahead (T1,T,) O T? Action
(b,b) predict B - b
(b,a) predict B - b
(b,a) predict B —
@9 predict B —

This is obviously non-LALL (2) as (b,a) predicts both productions of B. However, when B is
invoked from A, ba can only be recognized by applying the first production; when B is invoked
from C, ba can only be recognized by applying the second production. Context removes the
LALL (2) inconsistency, hence, the decision isLL (2). Table 7.4 providesthe LL (2) induces rela-
tion including context information.

Table 7.4 LL (2) induces Relation for Nonterminal B in Grammar G7.2

Context | Lookahead (14,T,) O T? Action
2 (b,b) predict B - b
1 (b,a) predict B - b
2 (b,a) predict B -
1 (a9 predict B -

Using the full LL (2) information, Figure 7.2 provides a procedure that correctly implements B.



142

procedur e B(ctxt:integer);
begin
if (ctxt=1and 14y =band 1, = a) or (ctxt=2 and 1, = b and 1, = b) then begin
MATCH(b);
end;
elsef (ctxt=land 1, =aand 1, = $) or (ctxt=2 and 1, = b and 1, = a) then begin
end;
end B;

Figure 7.2 LL (2) Implementation of B in Grammar 7.2

Each reference to B is given a unique integer that represents context; here, context is deceptively
simple as only two values are required. In general, context information for B would encode the
entire path from start symbol to the invocation of B. There are, unfortunately, an exponential
number of possible contexts; thisis the source of LL (k) impracticality.

Although they are generally impractical, LL (k) parsers can till take advantage of the linear
approximation techniques. Consider an LL (k) decision state with m possible transitions. Let t;
represent the k-deep lookahead tree that induces the i™ transition. The compressed lookahead
sets are trivially computed by merging al lookahead terminals at each depth j into /\} for 1<j <k.
Asbefore, if there is alookahead depth that separates each transition-pair, the decision is LL1(k);
in this case, the decision state would be linear in k rather than exponential. When it is not
LL(k), we employ the A, discriminant sets exactly as used for SLL (k); inside a decision state
thereis no difference between S_L (k), LALL (k) and LL (k) (or any of the LR(K) variants).

LL (k) parsers are stronger than SLL (k) and LALL (K) parsers, but are exponential in size;
the lookahead decision states may be reduced to near linear size, but the number of states will
always be exponentia in the worst case. We have shown how LL (k) lookahead differs from
LALL (k) lookahead and described how this lookahead can be compressed using LL (k) and
hybrid LL*(k)/LL (k) decisions as done for SLL (k) decision states.

7.39.R(K)

Although SLR (k) parsers are very different from SLL (k) parsers, the lookahead computa-
tions are identical and the LOOK algorithms may be used without modification; SLR (k) analysis
uses ‘‘global’’ FOLLOW information just like SLL (k) analysis. As a result, the linear approxi-
mation LOOK}, algorithm can be used to reduce SLR(k) analysistime. As an example, consider
Grammar 7.3 which is SLR(2); we will also use this grammar during the discussions of LALR (k)
and LR (k).



143

S - AB$$
A-C
A -

B -a
B-b
C - aAx

G7.3

A portion of the SLR(2) machine is shown in Figure 7.3.

S
S _. ¢ AB$$
A - eC
A e
C - eaAx

a

S,.

C - aeAx
A - eC a
A e

C - eaAx

Figure 7.3 Partial SLR(2) Machine for Grammar G7.3

SLR(K) parser construction algorithm is different from SLL (k), but, once again, the linear
approximation mechanism can be applied to reduce the size of S.R(k) decision states; this pro-
perty will hold true for LALR(k) and LR(k) as well. Table 7.5 describes the normal SLR(2)
action table for the partial SLR(2) machine as encoded by an inducesrelation.



Table 7.5 3. R(2) induces Relation for Partial S_ R (2) Machine For Grammar G7.3

Action Table
State | Lookahead (11,T,) O T? Action
(@ %) reduce A —
(b, $) reduce A -
(x,a) reduce A -
S (x,b) reduce A -
! (x,X) reduce A -
(a,a) shift, goto S,
(a,b) shift, goto S,
(a,x) shift, goto S,
@ %) reduce A —
(b, $) reduce A -
(x,a) reduce A -
S, (x,b) reduce A -
(a,a) shift, goto S,
(a,b) shift, goto S,
(a,x) shift, goto S,




145

The ‘‘goto’’ table, which maps nonterminals to states, is not included because it does not depend
on lookahead information. The SLR(2) action table, however, maps a lookahead sequence to a
shift or a reduce action. SLR(K) lookahead computations may use the SLL (k) LOOK directly.
Notice that LOOK, (A - e), as defined in Chapter 6, is exactly the set of lookahead sequences
that induces areduce A - action and that LOOK,(C - eaAXx) is exactly the lookahead set that
induces a shift, goto S, action.

The linear approximation LOOK}: algorithm can also be applied for SLR(k) grammars without
modification to reduce analysis time. Grammar G7.3 is SLR(2) and SLR'(2). Consider the
SLR(2) induces relation in Table 7.6, which could be computed via LOOK} or by simply com-
puting A\; sets (compressing all terminals at lookahead depth i for all i).

Table 7.6 SLR*(2) induces Relation for Partial SLR(2) Machine For Grammar G7.3

Action Table
State | Lookahead 1,7, OT,T Action
s {a,b,x}, {a,b,x, $} reduce A -
! {a}, {abx} shift, goto S,
s {a,b,x}, {a,b,x, $} reduce A -
2 {a}, {abx} shift, goto S,

The SLRY(2) compressed induces relation is not deterministic as there is no lookahead depth that
is disioint for the lookahead/action pair (interestingly, the LALR(2) and LR(2) induces rela-
tions are deterministic). Aswith the LL (k) variants, the hybrid state techniques of Chapter 6 can
be used to reduce the size of the lookahead information even though they are not SLR*(k). For
example, state S; can be implemented as the heterogeneous automaton state in Figure 7.4.

upon 1y O{a,b,x} and 1, O {a,b,x, $} and (11, To) I {(a,a),(a,b),(a,x)} reduce A - ;
upont, =aand 1, O {a,b,x} shift, goto S,;

Figure 7.4 Heterogeneous Automaton State for State S; of Figure 7.3



146

To store lookahead information, the state in Figure 7.4 requires three termina sets (at
|T |/wordsize words each), 1 termina, and three 2-tuples for a tota of
O(3x |T|/wordsize + 1 + 6) (about 7) words. Without the hybrid technique, a normal state
would need to store eight 2-tuples for atotal of 16 words. The O(|T |¥) storage requirements for
a conventional parser state quickly surpass the ‘‘sets plus a few tuples’ approach of the
S RY(2)/SLR(2) state.

SLR(K) is not commonly used, but its relationship to SLL (k), with regards to lookahead and
decision states, is interesting — SLL (k) lookahead computation algorithms may be used directly.
Accordingly, since SLR(K) parsers have sizes linear in the grammar size, we observe that linear
SLRY(k) parsers and near-linear SLR (k) parsers can be obtained contrary to the conventional wis-
dom that they are always exponential due to lookahead information size.

7.4 LALR(K)

LALR(1) parsers are very common due to the proliferation of LALR(1) parser generators.
LALR(K), in contrast, is amost unknown for practical systems. As with SLR(k), LALR(K)
parsers are considered an exponential problem due to the size of the lookahead information.
However, the fact that LALR(k) and LALL (k) parsers are duals [SiS90] of each other, implies
that LALR(1) LOOK} lookahead computations may be defined and used to reduce grammar
analysis time and lookahead decision state size.

Reconsider Grammar G7.3; Figure 7.5 shows the same portion of the LALR (2) machine that
Figure 7.3 shows of the SLR(2) machine.



147

Sl:

S - eAB$S$ |, {$%}
A _eC ,{a$b$}
A_e ,{a$b$}
C - eaAx ,{a$b$}

a

So:

C - aeAx ,{a$b$ xaxb}
A - eC |, {xaxb,xx} a

A S e | {xaxbx<
C - eaAx |, {xa,xb,xx}

Figure 7.5 Partial LALR (2) Machine for Grammar G7.3

Table 7.7 describes the normal LALR (2) action table for the partial LALR (2) machine as encoded
by an inducesrelation.

Table 7.7 LALR(2) induces Relation for Partial LALR (2) Machine For Grammar G7.3

Action Table
State | Lookahead (11,T,) O T? Action
(a %) reduce A -
S (b, $) reduce A -
! (a,a) shift, goto S,
(a,b) shift, goto S,
(x,a) reduce A -
(x,b) reduce A —
S, (x,x) reduce A -
(a,a) shift, goto S,
(a,x) shift, goto S,

The lookahead information in Table 7.7 is a subset of the lookahead in Table 7.5; L R(k) and
LALR (k) parsers have the same states, but LALR (k) parsers have more accurate |ookahead infor-
mation (at the cost of more complicated grammar analysis algorithms). Grammar G7.3 is not
SLRY(2), but it is LALR(2). Again, we compress the lookahead via computation with LALR (k)



LOOKG or by computing A; from the LOOK,, information; see Table 7.8.

Table 7.8 LALR(2) induces Relation for Partial LALR (2) Machine For Grammar G7.3

Action Table
State | Lookahead 1,7, O T,T Action
S {a,b}, {$} reduce A -
' {a}, {ab} shift, goto S,
S {x},{a,b,x} reduce A _
2 {a}, {ax} shift, goto S,

148

L ookahead depth two separates the action pair in state S; and depth one separates the action pair
in state S,. Figure 7.6 shows a heterogeneous decision state that implements the state S;’s

LALR(2) decision.

upon T, O{a,b} andt, O {$} reduce A —;
upon 1, =aand 1, O {a,b} shift, goto S,;

Figure 7.6 Heterogeneous Automaton State for State S; of Figure 7.5

A conventional lookahead decision state for S; would need space for four 2-tuples whereas the
LALRY(2) state requires space for only three bit sets and a word, which yields a reduction in
space from 8 words to about 2. The decision state for S, can be implemented as two terminal
comparisons rather than the conventional 5 2-tuple compares.

LALR(2) is the dual of LALL (2) and can similarly use the linear approximation LALR(2)
when analyzing grammars. In addition, the decisionsin states S; and S, are LALRY(2) resulting
in very small space requirements; the SLR(2) version was not also SLR(2), but still was able to
take advantage of the A; sets to construct small hybrid states. Because grammar G7.3 is
LALR(k), it isalso LR1(2) aswe shall seein the next section.



149

75LR(K)

The LR(K) parsing method has little to gain from the linear approximation analysis as the
number of parser states is exponential and full k-lookahead info must be moved aong during
state construction in case it is needed. However, any induces relation (decision state) may utilize
linear approximation compression even if compressed analysis is not performed; see Sections
7.20 and 6.18 for a description of how induces relations can be compressed. We conclude that
LR(k) is useful only as a state compression technique and cannot be used to reduce the exponen-
tially complex state construction algorithm. For completeness, this sections provides the LR(2)
machine analog of the SLR(2) and LALR (2) machines of previous sections for Grammar G7.3.

Splitting state S, of Figure 7.5 resultsin the LR (2) machine as shown in Figure 7.7.



150

S
S - eAB$S$ |, {$%}
A _eC ,{a$b$}
A_e ,{a$b$}
C - eaAx ,{a$%$b$}

S,:
C - aeAx ,{a$b$}
A - eC | {xaxb}
A - e ,{xaxb}
C - eaAx |, {xa,xb}

C - aeAx ,{xaxb}
A-eC | {x¢
A-e {xXg
C - eaAx ,{xg

a

84:

C - aeAx ,{x¢
A-eC | {x¢ a
A-e {xXg

C - eaAx ,{xg

Figure 7.7 Partial LR (2) Machine for Grammar G7.3



151

The LR(2) machine clearly points out that the amount of lookahead information decreases as we
progress from SLR(2) to LALR(2) to LR(2) while the number of states increases quickly; LRY(2)
analysis is not possible, but the associated compression can still be used to reduce decision state
complexity. States S,, Sz, and S, are all LR (1) decisions and are, therefore, efficient. State S; is
LR(2) and usesthe S; inducesrelationsin Tables 7.7 and 7.8.

Full LR(K) lookahead sets must be moved along from state to state during LR (k) machine
construction; in addition, LR (k) parsers have an exponential number of states. Hence, LR(K)
decision states may take advantage of the linear compression, LR*(k), but cannot use LR*(k)
compression during analysis.

To conclude our discussion of the LL (k) and LR(k) variants, we observe the following:
Once an induces relation has been established through analysis of any of the LL or LR variants,
the linear approximation scheme may used to reduce decision state size. For al but the
exponentialy-large, full LL (k) and LR(k) schemes, linear approximation can also be used to
reduce analysis time. More specifically, LALLY(k), LLY(k), SLR*(k), LALRY(k), and LR(k)
parsers are well-defined, but LL (k) and LR (k) lookahead set construction algorithms are not.

The LL(k) and LR(k)-based parsers are attractive due to their linear decision state com-
plexity, but are weaker than full LL (k) and LR (k). The next section generalizes lookahead deci-
sions to use anything from 1-tuple (set) to k-tuple comparisons.

7.6 LL™(k) and LR™(K)

The LLY(k) and LR(k) variants have linear decision state complexity and, for all but full
LLY(k) and LR (k), have linear grammar analysis complexity. Because of superior recognition
strength, LL (k) and LR (k) variants were also considered in previous sections. We showed how
the linear analysis could be used to reduce both grammar analysis time and parser decision state
complexity for these parsing strategies. LL*(k) and LR (k) are, for this reason, extremely useful
grammar classes. However, some induces relations (decision states) cannot be mapped correctly
using the linear class and yield large A, sets using the hybrid linear/k-tuple mapping. This sec-
tion generalizes parsing decisions so that the class of induces relations, between the linear and k-
tuple mappings, can be described and decision state complexity can be reduced further.

Define an LL™(k) parser as a normal, top-down, LL parser whose most complex induces
relation has m-tuples as the largest atomic unit and looks no more than k terminals ahead for
msk; LR™(k) parsers are defined similarly. LL¥(k) and LR¥(k) are, therefore, the familiar LL (k)
and LR(k). Contrary to the LL*(k) and LR*(k) variants, we do not define LL ™(k) and LR™(k)
lookahead computations. These grammar class generalizations are intended to describe more pre-
cisely the complexity of an induces relation; hence, we limit our discussion to the mapping of
induces relations.



152

An example can best illustrate these generalized decisions; in the notation of [SIS90], C (k)
represents some class of deterministic parser that we augment to form C™(k), which represents
the same class, but with generalized decisions. We will start with the results of the C3(3), or
C(3), analysis for some decision state and gradually reduce the space complexity of the mapping
using C™M(3) techniques; see Table 7.9.

Table 7.9 C(3) induces Relation

Lookahead (11,T,,T3) O T3 | Action
(a,b,c) 1
(c.e0) 1
xy,2) 1
(d,b,c) 2
(a,eQ9) 2

For this discussion, will assume that a terminal resides in a full hardware storage word and that
terminal sets are encoded as bit sets requiring | T |/wordsize words (about a word in our exam-
ple). We discuss decision state space complexity because it isimportant in and of itself and time
complexity will generally depend on how much information must be searched to make a parser
transition. For example, to implement the C (3) mapping to action 1, three 3-tuples or 9 words
are required to store the lookahead information; for action 2, 6 words are needed, which yields a
total of 15. In an effort to reduce this complexity, we attempt the minimal, linear C*(3) mapping
(which would yield 6 sets’words). The C1(3) relation associated with Table 7.9 is shown in
Table 7.10.

Table 7.10 C*(3) induces Relation

Lookahead 14, T,, T3 O T,T,T | Action

{a7C’X} 7{ b7e’y} 7{ C’g’z} 1
{a,d} {b,e} {c,f} 2

The C1(3) relation is inconsistent because there is no lookahead depth that separates the actions.
However, this linear approximation can be used in conjunction the C(3) to form a hybrid
C1(3)/C(3) mapping of the form:



153

T, O{a,c,x} andt, O{b,ey} and 13 LI {c,g,z} and (14, Tp, T3) I (a,€,9) induces 1
17, O{a,d} and 1, O{b,e} and 153 O {c,f} and (11, Tp, T3) [ (a,b,c) induces 2

Both induction expressions require 6 words for a total of 12 words. This hybrid approach
reduced the number of comparisons over the pure 3-tuple method from 15 to 12 words. More
compression can be done by considering C?(3) information such as that presented in Table 7.11.

Table 7.11 C?(3) induces Relation

Lookahead (1,,T3) O T? | Action
(ac) 1
(c.9) 1
(x,2) 1
(d,c) 2
(a,9) 2

By ignoring the terminals appearing at lookahead depth two, the dimension of domain has been
reduced. A straightforward collection of 2-tuples yields 10 words— a reduction by 2 over the
hybrid C1(3)/C(3) mapping. Linear compression, C(3) can be applied in this case as well to
further reduce the complexity. The C*(3) information is given in Table 7.12.

Table 7.12 C1(3) induces Relation for C2(3) Information

Lookahead 1, T3 O T,T | Action

{a,c,x} {c,0,7 1
{a,d}{c,f} 2

Notice, that the ‘3"’ in the C*(3) notation is the maximum lookahead, not how many terminals
are examined. Again, the C1(3) relation is inconsistent, but can be used in a hybrid C1(3)/C?(3)

mapping; i.e.

1, O{ac,x} and 13 O {c,g0,z} and (14, T3) 1 (a,9) induces 1
1, O0{a,d} and 13 O {c,f} and (14, T3) I (a,¢) induces 2



154

This mapping is the least complex at 8 words, using the straightforward tuple comparisons
method used here. To reiterate, C(3) information alone requires 15 words, but can be reduced to
12 using the C*(3) information. The C?(3) decision class allowed the complexity to be further
reduced to 8 words — a significant compression even for this small, contrived example.

Using an exhaustive search by terminal comparison approach, the time complexity for a
decision state will be the same as the space complexity. However, using a perfect hash function
approach, for example, the induces for full C(3) would only require a time complexity of 3 ter-
minal examinations (to compute the hash code from the key). However, nothing would have
been done to reduce the space complexity, which is an exponentia function in k— here, it is
[T |3. AsaC?(3) mapping, time complexity would be 2 and space complexity would be reduced
to |T|2. This demonstrates that the C™(k) generalization can reduce the complexity of many
different decision types.

In this section, we generalized LL (k) and LR(k) parsers and parsing decisions to LL (k)
and LR™(k), which characterize more precisely the complexity of inducing a parser action given
alookahead string without regards for the parsing method. No new lookahead computations were
defined because these generalizations refer specifically to the implementation of induces relation
mappings. By modulating the values of m and k, the minimum complexity for an induces rela-
tion implementation can be found for a given decision type.

This chapter explored the variants of LL (k) and outlined how LR(k), and its variants, can
take advantage of the techniques emphasized in the previous chapters on SLL1(k) and SLL (k).
We described LALL (k) lookahead information in detail and illustrated the difference between all
the LL (k) variants. The effect of linear compression upon SLR(k), LALR(k), and LR (K) parsers
and lookahead computations was outlined; the results are very similar to those of the LL variants
because, from a decision state implementation point of view, the differences between parsing
methods disappear. We observed that LOOK} computations are valuable for al but the full
LL (k) and LR(k) strategies, but that the associated linear compression can be applied to any
induces relation (decision state). Hence, grammar analysis time can be reduced for the non-
exponentialy large deterministic parsers, but can only reduce decision state complexity for the
exponential LL (k) and LR(k) schemes.

Further, in this chapter, we generalized these LL (k) and LR(k) parsers and parsing deci-
sions to LL™(k) and LR™(k), which provide a more accurate description of an induces relation
implementation complexity; specifically, m<k is the size of the largest tuple comparison and k is
the maximum lookahead depth. We demonstrated how various values of m can be employed to
significantly reduce parser decision complexity.



155

CHAPTER 8 CONCLUSION

Conventional deterministic parsing with lookahead depths greater than one is intractable
because lookahead information is potentially exponential; LL (k) and LR(K) parsers aso have an
exponential number of states, but any of the weaker variants such as SLL (k), LALL (k), SLR(k),
and LALR(k) can be used to avoid this problem. Lookahead was previously employed in a
straightforward manner — each state transition was a function of the current parser state and the
next k terminals of input regardiess of whether all k terminals were needed and whether looka-
head was needed at all. As aresult, each input symbol was inspected exactly k times. The fact
that decisions rarely need all k symbols led us to the concept that a new type of parser, called an
optimal parser, could be constructed that inspected each input symbol at most once. Further, if
each symbol is to be examined at most once, the conventional |ookahead atomic unit, the k-tuple,
must be dissolved into its constituent components: the individual terminals themselves. By vary-
ing the lookahead depth and by allowing non-k-tuple lookahead comparisons, we have removed
the two implicit assumptions that led most researchersto consider parsing, for k>1, impractical.

The most important contribution of this thesis is the compression of exponential |ookahead
information to a practical size, which was made possible only by the dissolution of the atomic k-
tuple. While others have considered modulating k and examining terminals individually, their
parser lookahead decisions are till exponentially large for k>1. We introduced linear approxi-
mations to full lookahead decisions, called C*(k), that use lookahead depths up to k, but consider
1-tuples (sets) the largest atomic unit; these decisions have lookahead of size O(|T | x k) rather
than O (| T |X). Moreover, these approximations are sufficient for most lookahead decisions; e.q.,
the empirical results of Section 5.11.2 indicate that S_L (k) covers about 75% of all SLL (k) deci-
sionsfor k>1. We generaized these approximations to C™(k), which consider the largest atomic
unit to be an m-tuple composed of terminals at contiguous and noncontiguous lookahead depths.
When C™(k) (for 1<m<k-1) decisions are insufficient, C (k) decisions must be constructed. In
this case, full lookahead information also can be compressed heavily. By building hybrid
C1(k)...C™(k)/C (k) decisions, the typical lookahead C (k) decision can be represented in a practi-
cal amount of space. C*(k) lookahead information may be obtained by compressing the full loo-
kahead information or may be sometimes obtained by computing it directly from the grammar
(only full LL (k) and LR (k) cannot use this approach). To that end, we defined a compressed 100-
kahead computation, LOOKGE, and provided an efficient algorithm that has linear time and space
complexity for afixed grammar — O (|G | x k). Without C™(k) decisions, deterministic parsing
for k>1 would remain infeasible.



156

Because most work in parsing is theoretical for lookahead depths greater than one, few
practical algorithms and data structures existed. Consequently, in this thesis, we provided
efficient structures for representing grammars, lookahead, and parsers with heterogeneous states.
We introduced new algorithms for computing lookahead, testing for grammar properties, and
constructing parser lookahead decisions.

To summarize our approach, recall that we represent grammars as GLA'’s, which redlize a
covering, regular approximation to the underlying context-free language. The lookahead
sequences of depth k for a position in the grammar correspond to a subset of the sequences of
non-¢ edges along the walks of length k starting from the associated GLA state. We store the
edges found along the walks of the GLA as child-sibling trees, but often view them as lookahead
DFA’s. Lookahead computations for any LL (k) or LR(k) variant are similar to NFA to DFA
COonversions.

Unfortunately, obvious algorithms for computing lookahead from GLA’s have time and
space complexities that are exponential functions of k. We overcome this intractability in three
ways. First, the lookahead depth, k, is modulated according the actual requirements of the pars-
ing decision. Second, the linear approximation lookahead is used in place of the normal looka-
head when possible. Third, the results of lookahead computations are cached in order to avoid
redundant computations.

Although the various LL (k)- and LR (k)-based parsers need lookahead of different depths
for different grammars and grammar positions, lookahead decisions are identical in nature. Each
decision is a mapping from a domain of terminals or terminal sequences to a range of parser
actions. We abstract the notion of alookahead decision to arelation called induces that describes
this mapping; thus, any transformation or implementation of an induces relation is equally valid
for any parsing strategy and isolates the computation of lookahead from the induction of parser
actions and the types of actions. Testing for parser determinism is accomplished by ensuring that
theinducesrelationsin all parser states are deterministic.

While LL (k) and LR(K) parser construction is well understood from a theoretical stand-
point, little practical work has been done because the implementation of lookahead decisions was
previousy considered intractable. We concentrated, therefore, on the implementation of parser
lookahead-decisions. While the worst-case decision size is proportiona to the worst-case size of
the lookahead information, O (| T |X), in general, much can be done to reduce this to a practical
size. As with lookahead computations themselves, we applied a hierarchical scheme: First, the
lookahead depth, k, is modulated to use minimum lookahead. Second, the linear approximation
lookahead is employed before full, exponential, k-tuple lookahead. Finaly, when the linear
approximation is insufficient, a hybrid state composed of the linear approximation plus a set of
k-tuples is used. By constructing parsers that use different lookahead depths and comparison
structures, parsers with large lookahead buffers become practical. Again, this scheme is only
possible by constructing heterogeneous parsers. Chapters 3 and 4 provided a new perspective on
lookahead information, lookahead computations, and grammar analysis. Chapter 5 provided a



157

complete description of SLLY(k) parsers while Chapter 6 considered full SLL (k) parsers. The
LL (k)- and LR (k)-based parsers were considered in Chapter 7.



[AhU72]

[AhU73]

[ASUS6]

[ADGO1]

[BeSs6]

[BeS90]

[Bro74]

[CuC73]

[DeM75]

[DeP82]

[DeR69)]

[DeR71]

158

LIST OF REFERENCES

A.V. Aho, J.D. Ullman, The Theory of Parsing, Translation and Compiling Volume
I, Prentice-Hall, 1972.

A.V. Aho and J.D. Ullman, **A technique for speeding up LR(k) Parsers,’” SIAM J.
Computing, Vol. 2, No. 2, 1973, pp 106-127.

A.V. Aho, R. Sethi, and J.D. Ullman, Compilers Principles, Techniques, and Tools,
Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.

M. Ancona, G. Dadero, V. Gianuzzi, and M. Morgavi, ‘‘Efficient Construction of
LR(K) States and Tables,” ACM TOPLAS Voal. 13, No. 1, January 1991, pp 150-
178.

Manuel E. Bermudez and Karl M. Schimpf, **A Practical Arbitrary Look-ahead LR
Parsing Technique,”’ Proceedings of the 1986 Symposium on Compiler Construction
(SIGPLAN Notices V21, #7 July 1986), pp 136-144.

Manuel E. Bermudez and Karl M. Schimpf, ‘‘Practical Arbitrary Lookahead LR
Parsing,”” Journal of Computer and System Sciences 41, 1990, pp 230-250.

B.M. Brosgol, ‘‘Deterministic Trandation Grammars,’’ TR-3-74, Center for
Research in Computer Technology, Harvard University, 1974.

Karel Culik Il, and Rina Cohen, ‘‘LR-Regular Grammars — an Extension of LR (k)
Grammars,”’ Journal of Computer and System Sciences 7, 1973, pp 66-96.

A.J. DeMers, ‘‘Elimination of Single Productions and Merging Nonterminal Sym-
bols of LR(1) grammars,”’ Computer Languages, Vol. 1, 1975, Pergamon Press,
Northern Ireland, pp 105-119.

Frank DeRemer and Thomas Pennello, **Efficient Computation of LALR(1) Look-
Ahead Sets,”” ACM TOPLASVal. 4, No. 4, October 1982, pp 615-649.

Frank DeRemer, ‘‘Practical Tranglators for LR (k) Languages,”’ PhD Thesis, Depart-
ment of MIT, Cambridge Massachusetts, 1969.

Frank DeRemer, “*Simple LR(k) Grammars,”’” Communications of the ACM, Vol.
14, No. 7, 1971, pp 453-460.



[Dob91]

[DoPQ]

[FiL88]

[Fri79]

[Gre65]

[HSU75]

[HuS78]

[Ives6]

[Joh78]

[JoS75]

[Knu65]

[Knu71]
[KrM81]

[LaL 76]

[LeS68]

[PDCO2]

[Pengé]

159

H. Dabler, “* Top-Down Parsing in Coco-2,”" ACM SIGPLAN Notices, Val. 26, No.
3, March 1991.

H. Dobler and K. Pirklbauer, ‘‘Coco-2 A New Compiler Compiler,”” ACM SIG-
PLAN Notices, Val. 25, No. 5, May 1990.

Charles N. Fischer and Richard J. LeBlanc, Crafting a Compiler,
Benjamin/Cummings Publishing Company, 1988.

D. Friede, ‘' Partitioned LL (k) Grammars,”’” Automata, Languages and Programming.
Lecture Notes in Computer Science 71, Springer Verlag, 1979, pp 245-255.
Greibach, **A New Norma Form Theorem for Context-Free Phrase Structure Gram-
mars,”’ Journal of ACM 12, 1965, pp 42-52.

Harry Hunt, Thomas Szymanski and Jeffrey D. Ullman, ‘*On the Complexity of
LR(k) Testing,”” Communications of ACM 18, 1975, pp 707-716.

Harry Hunt and Thomas Szymanski, ‘‘Lower Bounds and Reductions Between
Grammar Problems,”” Journal of the ACM 25, No. 1 January 1978, pp 32-51.

Fred lves, ‘“Unifying View of Recent LALR(1) Lookahead Set Algorithms,’”
Proceedings of the 1986 Symposium on Compiler Construction (SIGPLAN Notices
V21, #7 July 1986), pp 131-135.

Stephen Johnson, ‘‘Yacc: Yet Another Compiler-Compiler,”” Bell Laboratories,
Murray Hill, NJ, 1978.

Donald Johnson and Ravi Sethi, ‘* Efficient Construction of LL(1) Parsers,”’ Pennsyl-
vania State University Computer Science TR 164, 1975.

Donald Knuth, ‘*On the Trangdation of Languages from Left to Right,”’ Information
and Control 8, 1965, pp 607-639.

Donald Knuth, ** Top-Down Syntax Analysis,’”’ Acta Informatica 1, 79-110, 1971.

Bent Bruun Kristensen and Ole Lehrmann Madsen, ‘‘Methods for Computing
LALR(K) Lookahead,”” ACM TOPLAS, Voal. 3, No. 1, January 1981, pp 60-82.

Wilf R. LaLonde, ‘*On Directly Constructing LR (k) Parsers Without Chain Reduc-
tions, 3rd ACM Symposium on Principles of Programming Languages, 1976, pp
127-133.

P.M. Lewis Il and R.E. Stearns, ‘‘ Syntax-Directed Transduction,”” Journal of the
ACM, Vol 15, No. 3, 1968, pp 465-488.

T.J. Parr, H.G. Dietz, and W.E. Cohen, ‘‘PCCTS Reference Manual Version 1.00,"
ACM SIGPLAN Notices, February 1992.

Thomas Pennello, ‘*Very Fast LR Parsing,”” Proceedings of the 1986 Symposium on
Compiler Construction (SIGPLAN Notices V21, #7 July 1986), pp 145-151.



[Rob90]

[ROST70]

[SiS82]

[SiS83]

[SiS8g]

[SiS90]

[Ukk83]

160

George H. Roberts, ‘‘From Recursive Ascent to Recursive Descent: Via Compiler
Optimizations,”” SIGPLAN Notices, Vol. 25, No. 4, April 1990.

D.J. Rosendrantz and R.E. Stearns, ‘‘ Properties of Deterministic Top-Down Gram-
mars,”’ Information and Control 17, 1970, pp 226-256.

Seppo Sippu and Eljas Soisalon-Soininen, ‘*On LL(k) Parsing,”’ Journal of Informa-
tion and Control, Vol 53, 1982. pp 141-164.

Seppo Sippu and Eljas Soisalon-Soininen, ‘*On the Complexity of LL(K) Testing,”’
Journal of Computer and System Sciences, Vol 26, 1983. pp 244-268.

S. Sippu and Eljas Soisalon-Soininen, ‘‘Parsing Theory Volumne I,”’ Springer Ver-
lag, Berlin, 1988.

S. Sippu and Eljas Soisalon-Soininen, ‘‘Parsing Theory Volumne |1, Springer Ver-
lag, Berlin, 1990.

Esko Ukkonen, ‘‘Lower Bounds on the Size of Deterministic Parsers,”’ Journa of
Computer and System Sciences, Vol 26, 1983. pp 153-170.



161

APPENDIX

Sample Grammar Submissions From PCCTS Users

This appendix gives a description of the grammars submitted by users of PCCTS, the Purdue
Compiler-Construction Tool set, following a request for such. The grammars were stripped of
actions, converted to BNF notation. In addition, to protect the privacy of the original grammars,
the users converted all terminal and nonterminals to generic character strings. The grammars
were examined by the algorithms presented in this thesis.

[1]

(2]

(3]

[4]
(5]

(6]
[7]

(8]

[9]

[10]

[11]

Prototype C compiler front end; Peter Dahl (dahl@everest.ee.umn.edu), HPC Graduate
Fellow, Army High Performance Computing Research Center.

Command parser for a Nonlinear Finite Element Analysis Software; Tom Zougas
(zougas@me.utoronto.ca)

Fortranp grammar — Serial to Parallel Fortran Translator; Matthew O’ Keefe, Terence
Parr, B. Kevin Edgar, Steve Anderson, Paul Woodward, and Hank Dietz.

ANSI C grammar distributed with PCCTS 1.06; Terence Parr (parrt@ecn.purdue.edu).

Pascal Grammar distributed with PCCTS 1.06; Will Cohen (cohenw@ecn.purdue.edu)
and Terence Parr (parrt@ecn.purdue.edu).

Advanced tutorial string C from PCCTS 1.06; Terence Parr (parrt@ecn.purdue.edu).

ANTLR language description (antlr.gy PCCTS 1.06; Terence Par
(parrt@ecn.purdue.edu).

DLG language  description (dlg_p.g) PCCTS 1.06; Will Cohen
(cohenw@ecn.purdue.edu).

Front end to TROFF that makes it smell less bad; this thesis is written using it; Ter-
ence Parr (parrt@ecn.purdue.edu).

Converts LISP tree notation to EQN/PIC graphics; Terence Parr
(parrt@ecn.purdue.edu).

Convertsan NFA description to PIC code; Terence Parr (parrt@ecn.purdue.edu).



[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

162

Accepts BNF and putsinto data structure; Terence Parr (parrt@ecn.purdue.edu).
EBNF->BNF converter; Terence Parr (parrt@ecn.purdue.edu).

Compiler for a parallel programming (ELP); Mark Nichols, Gene Saghi, Dan Watson,
Mu-Cheng Wang, Robert Palmer, H.J. Siegel, and Hank Dietz.

Grammar for a case tool language. Currently our case tool is lisp based with an
LALR parser. We have converted our grammar over to PCCTS; Frank Korzeniewski
(frkorze@pachell.com).

COBOL - WSL trandator; Gareth L de C Morgan (g.l.morgan@durham.ac.uk), Univer-
sity of Durham.

Grammar used for parsing small modula-2 subset (currently only brief expressions
and conditionals.); Tom Rushton (T.G.A.Rushton@durham.ac.uk).

Grammar used for parsing large quantities of Modula-2. It won’t handle non-simple
types, and imported functions; Tom Rushton (T.G.A.Rushton@durham.ac.uk).

Ada-like "Macro" student project grammar from " Crafting a Compiler in C" by
Fischer & LeBlanc, used for graduate level compiler writing course; Roy B. Levow
(roy@gemini.cse.fau.edu), Florida Atlantic University.

Parses a wide range of SQL SELECT syntax; Fred Scholldorf
(scholldorf @nuclear.physics.sunysh.edu)

MACRO Compiler, A project for Compiler Writing Class, Michaed P. Vogt
(mike_vogt@vnet.ibm.com).

Convert a Linear Programming problem description into Matrix-Vector form; Gaut-
ham Kudva (kudva@ecn.purdue.edu).



163

VITA

Terence John Parr was born in Los Angeles, California, USA in the year of the dragon on
August 17, 1964 during the week of the Tonkin Gulf Crisis, which eventually led us into the
Vietnam Conflict; coincidence? Terence's main hobbies in California were drooling, covering
his body in mud, and screaming at the top of his lungs.

In 1970, Terence moved to Colorado Springs, Colorado with his family in search of better
mud and less smog. His formal education began in a Catholic grade school where he became
intimately familiar with penguins and other birds of prey. Terence eventually escaped private
school to attend public junior high only to return to the private sector — attending Fountain Val-
ley School for the ‘‘education’” only a prep school can provide. After being turned down by
every college he applied to, Terence begged his way into Purdue University’s School of Humani-
ties. Much to the suprise of his high school’s faculty and the general populace, Terence gra-
duated in 1987 from Purdue with a bachelor’s degree in computer science.

After contemplating an existence where he had to get up and go to work, Terence quickly
applied to graduate school at Purdue University’s School of Electrical Engineering. By sheer
tenacity, he was accepted and then promptly ran off to Paris, France after only one semester of
graduate work. Terence returned to Purdue in the Fall of 1988, eventualy finishing up his
master’s degree in May 1990 despite his best efforts. Hank Dietz served as major professor and
supervised Terence' s master’ sthesis.

A short stint with the folks in blue suits during the summer of 1990, convinced Terence to
begin his Ph.D.; again, Hank Dietz was his advisor. He passed the Ph.D. qualifier exam in Janu-
ary of 1991, stunning the local academic community. After three years of course work, research,
and general fooling around, Terence finished writing his doctoral dissertation and defended it
against asmall horde of professors and students on July 1, 1993.



LIST OF REFERENCES



APPENDIX



VITA



