
OBTAINING PRACTICAL VARIANTS OF LL (k) AND LR (k) FOR k >1

BY SPLITTING THE ATOMIC k-TUPLE

A Thesis

Submitted to the Faculty

of

Purdue University

by

Terence John Parr

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 1993

ii

ACKNOWLEDGEMENTS

I wish to acknowledge my parents (James and Peggy) and siblings (James Jr., Jacqueline,

and Josephine) throughout my education, without whose support I would never have persevered.

I thank Professor Hank Dietz, my advisor, for his encouragement and tolerance over the past five

years during my Masters and Doctorate.

I thank Professor Russell Quong for his interest in my research and helping me develop

many of the advanced language and parsing ideas in the ANTLR parser generator.

I wish to acknowledge Professors Dave Meyer and Jose Fortes for getting me interested in

electrical engineering and encouraging me to attend graduate school. Professor Leah Jamieson

deserves thanks for taking a chance on me and supporting my continued studies at Purdue.

I thank Professors Matt O’Keefe and Paul Woodward at the University of Minnesota for

providing me with the fellowship to finish my studies. Further, I wish to thank Paul Woodward

for giving me the work ‘‘ack.’’ I acknowledge Kevin Edgar for whom ‘‘no thanks is too much.’’

To the users of the Purdue Compiler-Construction Tool Set and codeveloper, Will Cohen, I

extend my gratitude for making all of my research worthwhile.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES...vi

LIST OF FIGURES...viii

ABSTRACT...xi

CHAPTER 1 INTRODUCTION ...1

CHAPTER 2 MOTIVATION..4

2.1 Terminology..4

2.2 The Need for k Terminals of Lookahead ..7

2.2.1 The Effect of Action Placement upon LR (k) and LL (k) ...8

2.2.2 LALR and SLR Versus LL ..15

2.3 Comparison to Previous Work in LL (k) and LR (k) Parsing ..17

2.4 Optimal Parsing of Deterministic Languages...20

2.4.1 Structure of Parser Comparison Sequences ...21

2.4.2 Optimal LL (k) Parsing...23

2.4.3 Optimal LR (k) Parsers...27

CHAPTER 3 PARSING ..31

3.1 Grammar Representation ..32

3.2 Heterogeneous Automata in Deterministic Parsing..35

3.3 Parsing Decisions..40

3.3.1 C 1(k) Decisions ...41

3.3.2 SLL (k) Lookahead Characteristics ..42

3.3.3 When Parsers Need Lookahead ...44

iv

Page

3.3.4 How Parsers Use Lookahead ...46

CHAPTER 4 PARSER LOOKAHEAD ..49

4.1 Representation...50

4.2 Operations ...53

4.2.1 Full Lookahead Operations..53

4.2.2 Linear, Approximate, Lookahead Operations..56

4.2.3 Lookahead Computation Cycles ..59

4.2.3.1 Example FIRSTk Cycle ...60

4.2.3.2 Example FOLLOWk Cycle ...62

4.3 Complexity of Lookahead Information Computation ..63

CHAPTER 5 SLL 1(k)— A LINEAR APPROXIMATION TO SLL (k)67

5.1 SLL 1(k) Decisions ..67

5.1.1 Example SLL 1(k) Grammar...68

5.1.2 Empirical Studies of SLL 1(k) Versus SLL (k) ...71

5.1.3 Recognition Strength Versus Space Requirements..75

5.1.4 SLL 1(k) Formalisms ..79

5.2 SLL 1(k) Lookahead Computation ..82

5.2.1 Example Lookahead Computation...83

5.2.2 Algorithms to Compute SLL 1(k) Lookahead ..85

5.3 Testing for the SLL 1(k) Property..91

5.4 SLL 1(k) Parser Construction...94

CHAPTER 6 SLL (k)..99

6.1 Example SLL (k) Grammar ...99

6.2 SLL (k) Lookahead Computation ..102

6.2.1 Example Lookahead Computation...102

6.2.2 Straightforward LOOKk Algorithm ...104

6.2.3 Constrained LOOKk Algorithm ...105

6.2.4 LOOKk Algorithm With Caching ..106

6.3 Testing for the SLL (k) Property ...113

6.3.1 Characteristics of SLL (k) Determinism...114

6.3.2 Algorithm for Testing for the SLL (k) Property ...116

6.3.3 Complexity of Testing for the SLL (k) Property ..119

6.4 SLL (k) Parser Construction ..120

v

Page

6.4.1 Lookahead Information Compression..120

6.4.2 Implementation of Heterogeneous Decision States ...125

6.4.3 Example SLL (k) Parser Constructions ..129

CHAPTER 7 LALL (k), LL (k), SLR (k), LALR (k), AND LR (k)...134

7.1 LALL (k) ..134

7.2 LL (k)...140

7.3 SLR (k)...142

7.4 LALR (k) ..146

7.5 LR (k)...149

7.6 LL m(k) and LR m(k)...151

CHAPTER 8 CONCLUSION..155

LIST OF REFERENCES..158

APPENDIX...161

VITA ...163

vi

LIST OF TABLES

Table Page

2.1 Partial Parsing Table ...11

2.2 Time to Create | T | n Lookahead Permutations (| T | =100)...20

3.1 Lookahead Requirements for 22 Sample Grammars ...43

3.2 Average Lookahead Requirements for 22 Sample Grammars..43

3.3 LL (3) induces Relation for State A of Figure 3.11 ...46

3.4 Example C (2) induces Relation...47

3.5 LL 1(2) induces Relation...48

5.1 SLL (2) induces Relation for Grammar G5.1..69

5.2 SLL 1(2) induces Relation for Grammar G5.1..70

5.3 Deterministic Lookahead Requirements By Decision Type for 22 Sample Grammars.............72

5.4 Number Nondeterministic Lookahead Decisions By Type for 22 Sample Grammars74

5.5 Total Number Nondeterministic Lookahead Decisions By Type for 22 Sample Grammars.....75

5.6 Example SLL (2) induces Relation ...76

5.7 Example SLL 1(2) induces Relation ...77

5.8 SLL 1(1) Relation induces for Grammar G5.3..84

5.9 SLL 1(2) induces Relation for Grammar G5.3 at k =2 ..84

5.10 Example SLL 1(3) induces Relation ...95

5.11 Sample Bit Set Implementation— setwd Array..97

6.1 SLL (3) induces Relation for Nonterminal D in Grammar G6.1 ..100

6.2 SLL 1(3) induces Relation for Nonterminal D in Grammar G6.1...100

6.3 Generic SLL (k) induces Relation for Nonterminal A ..121

6.4 Generic SLL 1(k) induces Relation for Nonterminal A...121

6.5 Implementation Strategies for m-ary Lookahead Decisions...126

6.6 Implementation Strategies for Non-m-ary Lookahead Decisions...128

vii

Table Page

6.7 SLL 1(2) induces Relation for Nonterminal A in Grammar G6.3 ...129

6.8 SLL (2) induces Relation for Nonterminal A in Grammar G6.4...131

6.9 SLL 1(2) induces Relation for Nonterminal A in Grammar G6.4 ...132

7.1 SLL (2) induces Relation for Nonterminal A in Grammar G7.1...136

7.2 LALL (2) induces Relation for Nonterminal A in Grammar G7.1 ..136

7.3 LALL (2) induces Relation for Nonterminal B in Grammar G7.2 ..141

7.4 LL (2) induces Relation for Nonterminal B in Grammar G7.2...141

7.5 SLR (2) induces Relation for Partial SLR (2) Machine For Grammar G7.3144

7.6 SLR 1(2) induces Relation for Partial SLR (2) Machine For Grammar G7.3..........................145

7.7 LALR (2) induces Relation for Partial LALR (2) Machine For Grammar G7.3......................147

7.8 LALR 1(2) induces Relation for Partial LALR (2) Machine For Grammar G7.3148

7.9 C (3) induces Relation ..152

7.10 C 1(3) induces Relation...152

7.11 C 2(3) induces Relation...153

7.12 C 1(3) induces Relation for C 2(3) Information ..153

viii

LIST OF FIGURES

Figure Page

2.1 Partial LR (k) Machine ..10

2.2 Comparison of LL (k) Determinism Methods...20

2.3 Conventional Parsing for k=3 ...22

2.4 Optimal Parsing for k=3..22

2.5 Near-Optimal Parsing where k-tuple Is Not Atomic...22

2.6 LL (2) Machine for Grammar G2.6 ...24

2.7 Partial Optimal LL (2) Machine for Grammar G2.6 ...25

2.8 Generic LR (k) Parser Decision State..27

2.9 Partial LR (2) Machine for Grammar G2.13 ...28

2.10 Partial Optimal LR (2) Machine for Grammar G2.13 ...29

3.1 GLA Construction from CFG ...33

3.2 GLA for Grammar 3.1 ..34

3.3 Idealized GLA versus Implementation GLA..35

3.4 $ k-augmentation of GLA’s ...35

3.5 Heterogeneous Automaton Template ...36

3.6 LL (2)-machine for Grammar 3.2 ..37

3.7 Heterogeneous Automaton States SA , SB , and SC ...38

3.8 Compression of States for Nonterminal C ..38

3.9 Partial LR (2)-machine for Grammar 3.3 ..39

3.10 Heterogeneous Automaton States S 0 , S 1 , and S 2 ...40

3.11 LL (3)-Machine for Grammar G3.4...44

3.12 LR (1)-Machine for Grammar G3.4...45

3.13 Example induces Relation Plot ..47

ix

Figure Page

4.1 Child-Sibling Tree Representation of k-tuple Set...52

4.2 Tree and DFA Duality Example for {(a,b,c),(a,d,e)}...53

4.3 SLL (k) LOOKk Operations on GLA...55

4.4 SLL 1(k) LOOKk
1 Operations on GLA...58

4.5 Grammar With FIRSTk Cycle...61

4.6 Partial Computation Dependence Graph for Grammar G4.2..61

4.7 Partial Computation Dependence Graph for Grammar G4.3..63

4.8 LOOKk Computation Planes ...64

4.9 Number of LOOKk
1 Invocations for Grammar G4.7 (no caching) ..65

5.1 Lookahead Vector Plot for Grammar G5.1...69

5.2 Automaton for induces in Table 5.1...70

5.3 Automaton for induces in Table 5.1...71

5.4 DFA’s for Example Lookahead Tuple Space ...76

5.5 Example Lookahead Vector Plot ..77

5.6 State for Example induces..78

5.7 Lookahead Vector Plot With Artificial Vectors..78

5.8 Generic SLL 1(k) Decision State ...79

5.9 Optimized SLL 1(k) induces State ..82

5.10 Example GLA for LOOK Computations ..83

5.11 Heterogeneous Automaton for Node A of Grammar G5.3 ...84

5.12 Inefficient Strong LOOKk
1 Algorithm on GLA...85

5.13 Efficient Strong LOOKk
1 Algorithm on GLA..88

5.14 Cache Retrieval for Efficient Strong LOOKk
1 ...89

5.15 Cache Storage for Efficient Strong LOOKk
1 ..90

5.16 Algorithm on GLA to Test SLL 1(k) Determinism ...92

5.17 SLL 1(k) Nonterminal Decision Template...94

5.18 SLL 1(3) Implementation of A ...96

5.19 Optimization of A’s Implementation ..97

6.1 Conventional State for Nonterminal D in Grammar G6.1..101

6.2 Hybrid State for Nonterminal D in Grammar G6.1 ..101

6.3 Example GLA for LOOK Computations ..103

x

Figure Page

6.4 Straightforward SLL (k) LOOKk Algorithm on GLA ...104

6.5 Constrained SLL (k) LOOKk Algorithm on GLA ...106

6.6 LOOKk Algorithm on GLA with Caching ..108

6.7 Cache Retrieval for Efficient SLL (k) LOOKk ..110

6.8 Cache Storage for Efficient SLL (k) LOOKk ...112

6.9 Average Number of LOOK Operations per Decision for SLL (n) Determinism.....................114

6.10 Average Analysis Time for SLL 1(n), SLL (n), and LALL (n) Determinism.........................115

6.11 Algorithm on GLA to Test SLL (k) Determinism...117

6.12 Algorithm on GLA to Test for SLL (k) Determinism ...118

6.13 Hybrid State for Nonterminal with Two Productions...122

6.14 Purely SLL (k) State for Nonterminal with Two Productions...123

6.15 Algorithm on Grammar to Construct SLL (k) Decision States ...124

6.16 Hybrid SLL (k) State for Nonterminal A of Grammar G6.3..130

6.17 SLL (2) Implementation of A for Grammar 6.3...130

6.18 Alternate SLL (2) Implementation of A for Grammar 6.3...131

6.19 Hybrid State for Nonterminal A in Grammar G6.4...132

6.20 Hybrid SLL 1(2)/SLL (2) Implementation of A for Grammar 6.4 ..132

7.1 LALL (k) LOOKk Algorithm on GLA...138

7.2 LL (2) Implementation of B in Grammar 7.2 ..142

7.3 Partial SLR (2) Machine for Grammar G7.3 ...143

7.4 Heterogeneous Automaton State for State S 1 of 7.3 ..145

7.5 Partial LALR (2) Machine for Grammar G7.3...147

7.6 Heterogeneous Automaton State for State S 1 of 7.5 ..148

7.7 Partial LR (2) Machine for Grammar G7.3 ...150

xi

ABSTRACT

Parr, Terence John. Ph.D., Purdue University, August 1993. Obtaining Practical Variants of
LL (k) and LR (k) for k >1 by Splitting the Atomic k-Tuple. Major Professor: Henry G. Dietz.

LL (k) and LR (k) parsers for k >1 are well understood in theory, but little work has been done in

practice to implement them. This fact arises primarily because traditional lookahead information

for LL (k) and LR (k) parsers and their variants is exponentially large in k. Fortunately, this worst

case behavior can usually be averted and practical deterministic parsers for k >1 may be con-

structed.

This thesis presents new methods for computing and employing lookahead information. Previ-

ously, the lookahead depth, k, was generally fixed and the lookahead information was represented

as sets of k-tuples. We demonstrate that by modulating the lookahead depth and by splitting the

atomic k-tuple into its constituent components, individual terminals, the lookahead information

size can be dramatically reduced in practice. We define a linear approximation to conventional

lookahead for LL (k) and LR (k) and their variants that reduces space requirements from an

exponential function of k to a linear function. Moreover, this approximation results in deter-

ministic parsing decisions for the majority of cases. By compressing lookahead information to

near linear space complexity, we show that deterministic parsing for k >1 is practical.

1

CHAPTER 1 INTRODUCTION

Most computer programs accept phrases from an input language and generate phrases in an

output language. These input languages are frequently complicated and their recognizers can

represent a considerable programming effort; e.g. programming languages, database interfaces,

operating system shells, text processors and even games. Language tools such as parser genera-

tors are generally used to construct parsers for these languages. There are a variety of parsing

strategies commonly in use, each with different recognition abilities, but all strategies can benefit

from large amounts of lookahead — the window into the input stream of symbols, called termi-

nals, that a parser examines to make parsing decisions. This thesis is concerned with extending

the recognition strength of automatically generated recognizers by empowering them with more

than a single terminal of lookahead.

Parsers typically employ a lookahead depth, k, of a single terminal because using deeper

lookahead was previously considered intractable — the complexity of grammar analysis and the

space complexity of the resulting parsers are exponential in the worst case. Fortunately, the

worst case is extremely rare and many deterministic parsing strategies may practically employ

lookahead depths of k >1.

Deterministic parsers that use more than a single terminal of lookahead, LL (k) and LR (k),

have two sources of exponential behavior: the number of parser states is exponential in the size of

the grammar and the lookahead information is exponential in k. The number of parser states can

be reduced to a polynomial function of the grammar size by employing any of the weaker LL (k)

or LR (k) variants, e.g. SLL (k) [RoS70], LALL (k) [SiS82,SiS90], SLR (k) [DeR69, DeR71], or

LALR (k) [DeR69], while still maintaining reasonable recognition strength. Conventional looka-

head information, on the other hand, is inherently exponential in nature as it must be able to

represent all possible vocabulary-symbol permutations of length k.

To facilitate practical parsers for k >1, we must change the way lookahead symbols are

employed. Previously, at each change of parser state, parsers examined the next k terminals of

input regardless of whether all k terminals were needed and whether lookahead was needed at all.

As a result, each input symbol was inspected exactly k times. The fact that decisions rarely need

all k symbols leads us to the concept that a new type of parser, called an optimal parser, could be

constructed that inspected each input symbol at most once. Further, if each symbol is to be

examined at most once, the conventional lookahead atomic unit, the k-tuple, must be dissolved

into its constituent components — the individual terminals themselves. By varying the

2

lookahead depth and by allowing non-k-tuple lookahead comparisons, we have removed the two

implicit assumptions that led most researchers to consider parsing, for k >1, impractical.

Our approach to parser construction is based upon new data structures, algorithms, and

parser lookahead-decision implementations. We begin by constructing a representation of the

grammar, called a grammar lookahead automaton (GLA), that represents the collection of all pos-

sible lookahead languages for all grammar positions. The lookahead sequences of depth k for a

position in the grammar correspond to some subset of the sequences of non-ε edges along the

walks of length k starting from the associated GLA state. The edges found along the walks can

be recorded as deterministic finite automata (DFA’s), which we store as child-sibling trees. Con-

sequently, all lookahead computations for any LL (k) or LR (k) variant can be elegantly described

as constrained automaton traversals.

Straightforward algorithms for lookahead computation have time and space complexities

that are, unfortunately, exponential functions of k. We circumvent this intractability in three gen-

eral ways. First, the lookahead depth, k, is modulated according to the actual requirements of the

parser decision. Second, an approximation to full lookahead, with potentially linear time and

linear space complexity, is used in place of the normal lookahead computation before attempting

conventional lookahead computations; these results even can be used to reduce the time to com-

pute full conventional lookahead sets. Third, the results of lookahead computations are cached in

order to avoid redundant computations. These approximations, denoted LL 1(k) and LR 1(k),

represent a significant departure from the normal view of lookahead computation and parser deci-

sion construction. Previously, lookahead was stored as sets of atomic k-tuples whereas we con-

sider a terminal to be atomic; e.g., the approximate lookahead computation is a form of compres-

sion that yields k sets of terminals rather than O (| T | k) k-tuples where | T | is the size of the ter-

minal vocabulary. Approximate lookahead has two direct benefits: The computation of the k sets

is of polynomial complexity (and potentially linear) in k and the lookahead decisions in the

resulting parsers have sizes linear in k.

Although the various LL (k)- and LR (k)-based parsers need lookahead of different depths

for different grammars and grammar positions, parsing decisions themselves are simple mappings

from a domain of terminals or terminal sequences to a range of parser actions; hence, parser loo-

kahead decisions are identical in nature regardless of the parsing strategy. We abstract the notion

of a lookahead decision to a relation called induces that describes this mapping; as a result, any

transformation or implementation of an induces relation is equally valid for any parsing strategy.

The induces relation also isolates the computation of lookahead from the induction of parser

actions and the type of action. Testing for parser determinism is accomplished by ensuring that

the induces relations in all parser states are deterministic.

While LL (k) and LR (k) parser construction is well understood from a theoretical stand-

point, little practical work has been done because the implementation of lookahead decisions was

previously considered intractable. We concentrate, therefore, on the implementation of parser

lookahead states. While the worst-case parser decision size is proportional to the worst-case size

3

of the lookahead information, O (| T | k), in general, much can be done to reduce this to a practical

size. As with lookahead computations themselves, we apply a hierarchical scheme: First, the

lookahead depth, k, is modulated to use minimum lookahead; most lookahead states can be

resolved with only a single terminal of lookahead (k =1), which yields a parser whose lookahead

information is mostly linear in size. Second, the linear approximation is attempted before full k-

tuple lookahead; in the event that k >1 lookahead is required, it is generally sufficient to look at

the terminals visible at particular lookahead depths rather than k-sequences of terminals. Finally,

when the linear approximation is insufficient, a hybrid decision composed of the linear approxi-

mation plus a few k-tuple comparisons is used. By constructing parsers that can dynamically

switch between different lookahead depths and comparison structures, parsers with large looka-

head buffers become practical. We describe these parsers, which have different state types, as

heterogeneous parsers.

Because LL (k) and LR (k) languages cannot be recognized with parsers of polynomial size

[HuS78], we choose to demonstrate our approach using a variant that has size proportional to the

grammar size. We shall emphasize the LL (k) variant SLL (k) in this thesis because LL (k) gram-

mars may be transformed into structurally equivalent SLL (k) grammars [RoS70] and SLL (k)

clearly illustrates the important issues in our approach to parser construction — grammar

representation, lookahead information representation, lookahead computation, lookahead deci-

sion determinism, and lookahead decision implementation. LALL (k), LL (k), SLR (k), LALR (k)

and LR (k) parsers are, however, discussed in Chapter 7.

This thesis is organized as follows: Chapter 2 provides motivation for the use of more than

a single terminal of lookahead in deterministic LL (k) and LR (k) parsing, outlines previous work

in the area of LL (k) and LR (k) parsing, and introduces optimal parsing, which motivated our dis-

solution of the atomic k-tuple. Chapter 3 details our approach to parser representation and

Chapter 4 details our new perspective on lookahead information, lookahead computations, and

grammar analysis. Using the methodology in Chapters 3 and 4, Chapter 5 provides a complete

description of SLL 1(k) parsers including linear grammar analysis and parser construction.

Chapter 6 is similar in form to the format of Chapter 5, but describes SLL (k) completely. The

SLL 1(k) linear analysis of Chapter 5 is used to reduce grammar analysis time and to reduce the

size of SLL (k) parsers. Chapter 7 completes the thesis by describing the other LL (k) and LR (k)

variants. In addition, Chapter 7 generalizes LL 1(k) and LR 1(k) to LL m(k) and LR m(k).

4

CHAPTER 2 MOTIVATION

Almost all theoretical work regarding LL (k) [LeS68] and LR (k) [Knu65] parsers has cen-

tered around using more than a single terminal of lookahead (k >1) while almost all practical

work assumes that a single terminal of lookahead is employed. This is primarily because com-

puting lookahead information needed to make parsing decisions is much more difficult for k >1

and the resulting information is exponentially large in the worst case. Nonetheless, we maintain

that k >1 terminals of lookahead are very useful; future chapters provide a mechanism by which

parsers that employ a lookahead depth greater than one can be practically implemented.

This chapter defines the notation used throughout this thesis, provides motivation for the

use of large amounts of lookahead, describes what others have done with regards to LL (k) and

LR (k) parsing, and presents a utopian view of parsing, called optimal parsing; while trying to

reduce the number of lookahead inspections, optimal parsing inspires our view that the k termi-

nals of available lookahead can be examined individually rather than in an atomic k-tuple.

2.1 Terminology

In general, we use the notational conventions of [ASU86] and [SiS88, SiS90] in this thesis

for discussing parsing theory.

The input to a parser consists of a sequence of symbols, which are merely words from a

vocabulary, T. A string of symbols is a finite, ordered sequence of symbols; the empty string is

denoted ε. The set of all strings that may be constructed from a vocabulary, therefore, is T * , the

closure of T. T + , the set of nonempty strings constructed from T, is T * − ε, the positive closure

of T. A symbol or set of symbols may be raised to an exponent, n, which implies that n of the

symbol or symbol are required; e.g. T 3 indicates a sequence of 3 symbols from set T and a 5 indi-

cates aaaaa. The prefix of a string, w = a 1 ...an , is

k :w =

�� �
a 1 ...ak

w

| w | >k

| w | ≤k

5

where | w | is the length (number of symbols) of w.

The structure of an input language is described with a context-free grammar (CFG) or

grammar for short as only context-free languages (CFL’s) are discussed in this thesis. A CFG is

a four-tuple G = (N,T,P,S) where

N is the finite set of nonterminal symbols

T is the finite set of terminal symbols (input language vocabulary)

P ⊆ N × (N ∪ T)* is the finite set of productions of the form A → α where α ∈ (N ∪ T)*

S ∈ N is the start symbol

where we augment all T with ‘‘$’’, the end-of-file marker. Define an item to be a position in the

grammar denoted [A → α � β] for some α,β ∈ (N ∪ T)* . We further define the left edge of a

production to be an item of the form [A → � α]; the brackets will be left off when it is obvious

that an item is being discussed. The grammar vocabulary is V = N ∪ T, whereas the vocabulary

of the input language is T. A rule is a nonterminal plus a collection of one or more of its produc-

tions.

The size of an object is denoted | ... | . For example, the size of a grammar | G | is

| G | =
A → α ∈ P

Σ | Aα |

which is the number of distinct positions within the right hand sides of all productions; similarly,

| T | , | N | , and | P | are the number of terminals, nonterminals and productions, respectively.

Unless otherwise specified, the lower-case Greek letters, α, β, ..., ζ represent strings of

grammar symbols. The lower-case Latin letters u, v, ..., z represent strings of terminals while

most lower-case letters appearing earlier in the alphabet are single terminals; the letters i −q

represent action numbers, integers or automaton states. Upper-case Latin letters generally

represent nonterminals. Define the derivation relations ⇒, ⇒* and ⇒+ as ‘‘directly derives,’’

‘‘derives in zero or more steps,’’ and ‘‘derives in one or more steps’’ where each relation may be

annotated with lm for a leftmost or rm for a rightmost derivation; i.e.

uAβ ⇒lm uαβ leftmost derivation

βAu ⇒rm βαu rightmost derivation

with α,β ∈ V * , u ∈ T * and A → α ∈ P.

The language generated by a grammar, L (G), is the set of all strings derivable from the start

symbol; i.e. L (G) = { u ∈ T * | S ⇒+ u }. In general, when S ⇒* α, α is called a sentential

form of G; if α ∈ T * , such as u above, α is called a sentence of G. A left (right) sentential form

is a sentential form resulting from a leftmost (rightmost) derivation. Unless specified otherwise,

the start symbol is always that of the first production given.

6

FIRSTk(α) is the set of all strings, less than or equal to k in length, that can begin any sen-

tence derived from α ∈ T *:

FIRSTk(α) = { k :w | α ⇒* w where w ∈ T * , α ∈ V * }

If α derives the empty string (ε) then FIRSTk is not ε as many propose and if α is itself ε then

FIRSTk is the empty set, ∅. Occasionally, ε is used as an imaginary placeholder terminal for

implementation’s sake, but should not be a result of a FIRSTk operation.

The computation FOLLOWk(A), for some A ∈ N, is the set of all strings which can be

matched immediately following the application of A in any valid derivation; i.e.

FOLLOWk(A) = { FIRSTk(β) | S ⇒* αAβ }

for some α ∈ T * , β ∈ V * for LL (k) and α ∈ V * , β ∈ T * for LR (k).

LL (k) [LeS68] and LR (k) [Knu65] parsers recognize LL (k) and LR (k) languages described

by LL (k) and LR (k) grammars, respectively. An LL (k) grammar is one for which each nonter-

minal, A, satisfies the LL (k) condition:

FIRSTk(α1δ) ∩ FIRSTk(α2δ) = ∅

for all left sentential forms uAδ and distinct productions A → α1 and A → α2 in P. A Strong

LL (k) (SLL (k)) grammar [RoS70] is defined similarly:

FIRSTk(α1FOLLOWk(A)) ∩ FIRSTk(α2FOLLOWk(A)) = ∅

A grammar is LR (k) if its canonical LR (k) parser is deterministic. Equivalently, [SiS90] states

that the conditions

S ⇒ δ2A 2y 2 ⇒ δ2ω2y 2=vxy 2

S ⇒ δ1A 1y 1 ⇒ δ1ω1y 1=vy 1

always imply that δ1 = δ2 , A 1 = A 2 , and ω1 = ω2 . A Simple LR (k) (SLR (k)) [DeR71] grammar

is one for which the SLR (k) parser is deterministic. [SiS90] states that an SLR (k) parser is deter-

ministic if for all states q, the following hold:

7

Whenever q contains a pair of distinct items

[A 1 → ω1 �], [A 2 → ω2 �], then

(1)

FOLLOWk(A 1) ∩ FOLLOWk(A 2) = ∅

Whenever q contains a pair of items

[A 1 → α � aβ], [B → ω �], where a is a terminal,

then

(2)

FIRSTk(aβFOLLOWk(A)) ∩ FOLLOWk(B) = ∅

We shall refer to any state that examines lookahead within a parser as a parser decision

state. Also, the k terminal symbols in a deterministic parser’s lookahead buffer are referred to as

τ1 , ..., τk. The reader is assumed to be generally familiar with the actual construction of ‘‘top-

down’’ (LL (k)) and ‘‘bottom-up’’ (LR (k)) parsers; see [SiS90] or [ASU86] for detailed discus-

sions.

In [SiS90], the authors use the notation C (k) to refer generically to LL (k), LR (k) and their

variants. We will use this notation as well when referring to generic deterministic parsers.

2.2 The Need for k Terminals of Lookahead

Consider modifying a compiler whose recognizer was built using a parser generator. A

change of target machine could involve changing semantic actions within the grammar and prob-

ably the placement of some of these actions. Because recognition and translation are logically

separate phases, one phase should not interfere with the behavior of the other. For a semantic

modification to break the recognizer is unacceptable, but this is precisely what can occur with an

LR-based parser generator because productions must be ‘‘cracked’’ to create reductions

corresponding to the action positions. Placing an action within an LR grammar implies rule

cracking, thus, we use both notations interchangeably in this section. Placing actions within an

LALR (1) [DeR71] parser generator, such as YACC [Joh78], can be a terribly irritating experi-

ence, but has become acceptable due to its apparent unavoidability. This is because the only

commonly available substitute was LL (1). Although LL (1) parsers are not sensitive to action

placement and are more flexible semantically, in practice, LL (1) recognizers are noticeably

weaker LALR (1); LL (1)-conforming grammars are more difficult to construct.

Can sensitivity to action placement be reduced while retaining reasonable recognition

strength? LR parsers will never be insensitive to action placement, but both LL and LR tech-

niques can benefit from k terminals of lookahead. It is well known that LL (k) is stronger than

LL (k −1) [FiL88]. Knuth [Knu65], in contrast, shows that an LR (k) grammar always has an

LR (1) equivalent; unfortunately, transforming LR (k) grammars to LR (1) is not easy and, further,

grammars cannot be arbitrarily rewritten when actions may be placed anywhere among the

8

productions. To demonstrate the effect of action placement, this section shows, among other

things, that LL (k) is strictly stronger than LR (k −1) given that actions can be placed at any posi-

tion in a grammar. We suggest that, regardless of the parsing method, k >1 terminals of looka-

head are useful and that, unfortunately, in the worst-case action placement scenario, LL (k) is the

largest class of languages one can recognize with a context-free grammar after the actions have

been forced to a production right edge.

This section presents a number of theorems regarding the relative recognition strength of

LL, LR, LALR and SLR [DeR69, DeR71] grammars augmented with semantic user-defined

actions. Section 2.2.1 begins by discussing how actions may be embedded within LR productions

and proceeds to prove a theorem which is fundamental to our discussion of expressive strength —

the strength of LR (k) can be reduced to that of LL (k) by an appropriate choice of action place-

ment. In addition, this section shows that, in fact, LR (k) grammars generate a larger class of

languages than LR (k −1) grammars generate when augmented with actions. Section 2.2.2

explores the relationship between the LR (k)-based classes of languages and the LL (k) class.

2.2.1 The Effect of Action Placement upon LR (k) and LL (k)

In the course of deriving the properties of ‘‘translation grammars,’’ Brosgol [Bro74] made a

useful observation about the relationship between LL (k) and LR (k). He showed that a grammar

is LL (k) iff that grammar, augmented on each left edge with a reference to a unique ε-

nonterminal, is LR (k). Because insertion of an action at the left edge of a production implies

cracking to introduce such a reference, Brosgol’s work can be seen as proving that, in the worst-

case action placement, LR (k) is equivalent to LL (k).

In this section, we examine the more general properties of different parsing methods and

lookahead depths relative to placement of actions. We show that LL (k) is insensitive to action

placement, LR (k) cannot generally be rewritten as LR (k −1) (when actions may be arbitrarily

inserted), and finally that LL (k) is stronger than any deterministic parsing method with less loo-

kahead because of the deleterious effect of arbitrary action-placement upon LR’s recognition

strength. We begin by defining how an LR grammar can be augmented with arbitrarily-placed

actions.

Definition: Rule cracking is the process by which semantic actions may be embedded within LR

productions. Productions of the form A → α @ β are translated into A → A (1) β and

A (1) → α @ where A (1) is unique and α, β ∈ V *; @ represents a unique semantic action; T is

the set of terminals and N is the set of nonterminals.

Once a rule has been cracked to force actions to right edges, the actions can be ignored;

they do not affect grammar analysis. For example,

9

A (1) → @

A → A (1) α

is identical to

A (1) →
A → A (1) α

from a grammar analysis point of view. The productions cannot be recombined to A → α, how-

ever, because at parser run-time the actions must be executed.

We shall present a proof, different from Brosgol’s, that LR’s strength can be reduced to that

of LL, but beforehand, consider an LR grammar in which actions have been placed at all possible

positions in all productions. The augmentation effectively forces the LR parser to assume a one-

to-one correspondence between parser state and grammar position. LR’s recognition strength

comes from its ability to be at more than one position in the grammar at once. If this advantage

is taken away, the LR parser would have a unique mapping from parser state to grammar position;

i.e. the LR parser could only recognize LL languages. Similarly, by placing actions at the left

edge of productions, the LR parser is forced to know its position in the grammar at the left edge

of every rule rather than at the right edge; which implies that it must predict which production it

will apply. Once again, this renders the LR parser only as strong as LL.

Theorem 2.1: Let G be an LR (k) grammar with productions of the form A → α. Construct a

new grammar, G’, by augmenting productions of G with unique semantic actions, @i , such that

productions of G’ are of the form A → @i α. Crack the productions in G’ to force the actions to

production right edges and then remove the actions for the sake of grammar analysis.

G ∈ LL (k) ⇐⇒ G’ ∈ LR (k).

Proof:

To show that G’ ∈ LR (k) ⇒ G ∈ LL (k), we show that left recursion in G is illegal and that k ter-

minals of lookahead are sufficient to predict each production. Three cases must be considered:

Case (i): Nonterminals in G with only one production, A → α. After augmentation, nonterminal

A in G’ will be of the form:

A → @ α

which is cracked to form:

A (1) → @

A → A (1) α

Because G ∈ LR (k), nonterminal A cannot be left recursive as productions of the form, A → A δ
(where δ ∈ (N ∪ T)* with N the set of nonterminals and T the set of terminals) never derive any

terminal strings. Because no parsing decision is required to predict the single production of A

and because A is not left recursive, the original nonterminal A in G is LL (k)-decidable (in fact, A

is LL (0)).

10

Case (ii): Nonterminals in G with exactly two productions are augmented to form:

A → @ 2 β
A → @ 1 α

Productions in A are cracked to force the actions, @i , to production right edges. This yields the

corresponding portion of G’:

A (2) → @ 2

A (1) → @ 1

A → A (2) β
A → A (1) α

The transformation to G’ preserves the LR condition if there does not exist a k-sequence that is

common to the lookahead sequences for A (1) and A (2). This indicates that k terminals must be

sufficient to predict the productions of A in G’ and, hence, to predict productions of A in G. α
and β are not left recursive; if both were left recursive, nonterminal A would never derive any ter-

minal string and if one of them were left recursive, a shift/reduce error would occur in the aug-

mented grammar G’. To visualize the conjecture that the lookahead sets must be different for the

two productions, consider Figure 2.1.

A → A (1) � α , γ A → A (2) � β , γ

A → � A (1) α , γ
A → � A (2) β , γ

A (1) → � , {FIRSTk(α γ)}

A (2) → � , {FIRSTk(β γ)}

A (1) A (2)

S 0:

S 1: S 2:

Figure 2.1 Partial LR (k) Machine

The general form of an LR (k) item is [A → α, γ] [ASU86] with γ the lookahead component

‘‘inherited’’ from the state pointing to state S 0 and other items in state S 0 . Because G’ is

assumed to be LR (k), the other items do not need to be considered; they, by assumption, do not

conflict with the items associated with A. If FIRSTk(α γ) ∩ FIRSTk(β γ) ≠ ∅ then the automaton

would be unable to decide whether to reduce A (1) or A (2), rendering G’ non-LR (k). The partial

11

parsing table for the automaton, Table 2.1, illustrates that if FIRSTk(α γ) and FIRSTk(β γ) were to

overlap, a reduce/reduce conflict would arise.

Table 2.1 Partial Parsing Table

� �
Action �� Goto� �State

FIRSTk(α γ) FIRSTk(β γ) A (1) A (2)� �
0 rA (1) rA (2) 1 2

1 s3

2 s4� ����
��
��
��

���
��
��
��

��
��
��
�

���
��
��
��

The symbol rA (1) means reduce A (1) and s3 means shift and go to state 3 [ASU86]. Since the

assumption of G’ ∈ LR (k) implies that FIRSTk(α γ) and FIRSTk(β γ) have no common k-tuples, k

terminals of lookahead are sufficient to predict which production of A in G to apply. As men-

tioned above, α, β in G’ must not be left recursive in order to leave G’ ∈ LR (k). Hence, since α
and β are not affected by the transformation from G to G’, the original nonterminal A must not be

left recursive.

When G’ ∈ LR (k), each nonterminal A in G with exactly two productions is LL (k)-decidable.

Case (iii): Nonterminals, A, in G with more than two productions:

A → ζ
...

A → β
A → α

can be transformed into a series of nonterminals with at most two productions by rewriting them

in the following way:

A (m) → ζ
...

A (1) → A (2)

A (1) → β
A → A (1)

A → α

This transformation does not affect the LR (k) nature of G. The results of cases (i) and (ii) may be

used because the A (i) have at most two productions; hence, nonterminal A and all subsequent A (i)

created in this fashion are LL (k)-decidable.

12

Cases (i), (ii) and (iii) indicate that, when G’ ∈ LR (k), each nonterminal in G is LL (k)-

decidable; therefore, G ∈ LL (k).

To show that G ∈ LL (k) ⇒ G’ ∈ LR (k), it is sufficient to observe that, by lemma 2.1,

G ∈ LL (k) ⇒ G’ ∈ LL (k). Then, G’ ∈ LR (k) since LL (k) ⊂ LR (k) [RoS70].�
Theorem 2.1 directly shows that, in the worst case, an LR (k) grammar can be rendered only

as expressive as an LL (k) grammar. This result follows from the forced bijection between parser

state and grammar position at the point of action insertion.

The same action insertion that weakens LR grammars does not affect the nature of an LL

grammar — even if the productions are cracked in the LR-fashion to force actions to a production

right edge. We now show that the introduction of unique ε-nonterminals at the left edge of all

productions in an LL (k) grammar has no effect upon its LL (k) nature; i.e. the transition from G

←→ G’, as described above, does not affect LL (k) determinism.

Lemma 2.1: Construct grammar G’ from G as before in theorem 2.1. G ∈ LL (k) ⇒ G’ ∈ LL (k).

Proof:

All nonterminals, A, in G are of the form:

A → αn

...

A → α2

A → α1

where α ∈ T are augmented in G’ to form:

A (n) →
...

A (2) →
A (1) →

A → A (n) αn

...

A → A (2) α2

A → A (1) α1

Because nonterminals A (i) have only one production, they are trivially LL (k). Because, for the

augmentation of a production A → αi to A → A (i) αi , FIRSTk(A (i) αi γ) = FIRSTk(αi γ), the

transformation to G’ does not affect the lookahead set for productions; γ is derived from sen-

tences of the form ω A γ such that S ⇒*
lm ω A γ with ω ∈ T * , γ ∈ V * . Hence, nonterminals that

are LL (k) in G are LL (k) in G’. Finally, because all nonterminals A and A (i) in G’ are LL (k),

G’ ∈ LL (k).�

13

Lemma 2.1 shows rule cracking in LL (k) grammars, as performed in Theorem 2.1 for

LR (k) grammars, has no effect upon LL (k) determinism. It is also the case that rule cracking for

arbitrarily-placed actions has no effect upon the LL (k) nature of a grammar. Informally, rule

cracking for actions not at the left edge, A → α @ β, introduces unique nonterminals, A (i) → α,

with only one production; a construct which is clearly LL (k). The cracked rule that invokes A (i)

is of the form A → A (i) β and has an unperturbed lookahead set.

In contrast, the placement of actions within a grammar does restrict how a grammar can be

rewritten. The proof that LR (1) is equivalent to LR (k) in [Knu65] relied upon the fact that gram-

mars could be arbitrarily rewritten — or, more precisely, Knuth’s proof did not consider the case

where a specific sequence of semantic actions must be ‘‘folded’’ into the sequence of terminal

matches. When this ability to arbitrarily rewrite a grammar is removed, or when an exact

sequence of actions must be triggered relative to the terminal matches, LR (k) is stronger than

LR (1). This should not surprise the reader in that, under the stated conditions, we have shown

that LR (k) is equivalent to LL (k) and LL (k) is known to be stronger than LL (k −1) [RoS70]. We

formalize this notion in the following theorem.

Theorem 2.2: When actions may be placed arbitrarily among the productions of a grammar,

LR (k) grammars cannot, in general, be rewritten to be LR (k −1); i.e. LR (k −1) ⊂ LR (k) for k >1.

Proof:

We prove that LR (k) is stronger than LR (k −1) by showing that there exists at least one grammar,

augmented with actions, which is LR (k) that cannot be rewritten to be LR (k −1) for some k. Con-

sider Grammar G2.1 that is LR (2), before cracking, where x and y are terminals.

A → @ 2 x z

A → @ 1 x y
G2.1

Nonterminal A must be cracked to form Grammar G2.2:

A (2) → @ 2

A (1) → @ 1

A → A (2) x z

A → A (1) x y

G2.2

Clearly, this grammar can be rewritten an infinite number of ways. But, to preserve the semantics

of the translation and the syntax of the language, the order of action execution and terminal

recognition must be preserved; e.g. @ 1 cannot be moved to the position between the x and y in

production one because the actions @i must be executed before x has been recognized. Grammar

G2.2 generates a language with two sentences, x y and x z, with the constraint that a reduce,

either A (1) or A (2), must occur before a sentence is recognized. In order to reduce the correct ε-

production, two terminals of lookahead are required to predict which sentence will be recognized.

No matter how the grammar is rewritten, as long as it satisfies the constraints mentioned above,

entire sentences must be seen to avoid a reduce/reduce conflict relative to A (1) and A (2). This fact

14

implies that one terminal of lookahead always will be insufficient because two terminals are

required to uniquely identify a sentence; Grammars G2.1 and G2.2 can be rewritten to be LR (1).

There exists at least one LR (k) grammar that cannot be rewritten to be LR (k −1). Therefore,

LR (k −1) ⊂ LR (k) for k >1 when actions can be arbitrarily placed among the productions of a

grammar.	
In effect, Theorem 2.2 shows that LR (k) is not equivalent to LR (1) because embedded

actions place severe constraints upon how a grammar may be rewritten. From the point of view

of action triggering relative to terminal matching, Theorem 2.2 shows that there exists a language

which is LR (k) with no LR (k −1) equivalent that preserves the action-triggering, terminal-

matching, sequence. Although there may be many grammars with actions that can be rewritten as

LR (1), in general, a LR (k) grammar with actions cannot be rewritten in LR (1) form.

We conclude that LL (k) is stronger than any known deterministic parsing strategy with less

lookahead, by combining the results of Theorems 2.2 and Corollary 2.1, given the constraint that

actions may be placed anywhere within the associated grammar. Corollary 2.2 states this for-

mally:

Corollary 2.1: LR (k −1) ⊂ LL (k) when actions may be placed arbitrarily among the productions

of a grammar.

Proof:

Let G’ be a grammar whose productions have been cracked to allow a set of arbitrarily placed

actions. G’ ∈ LL (k) ⇒ G’ ∈ LR (k) and, by Theorem 2.2, LR (k −1) ⊂ LR (k), which implies

G’ ∈/ LR (k −1) by transitivity. Therefore, there are grammars, G’, which are LL (k), but not

LR (k −1).	
The reader may argue at this point that, in practice, there are LR (k) and even LR (k −1)

grammars with actions that are not LL (k). While this is correct, we consider the general case of

grammars with actions interspersed arbitrarily among the productions. Our assumption allows us

to always choose actions on the left edge. We do not suggest that LL is as strong as LR in prac-

tice, we merely show that k >1 terminals of lookahead are very useful due to the deleterious effect

of action placement on recognition strength. For example, Grammar G2.1 is LR (0) without

actions and LR (2) with actions.

This section provided a proof that LR (k) grammars are not always more expressive than

LL (k) grammars due to the introduction of extra nonterminals resulting from rule cracking.

Lemma 2.1 supported a step in the proof of theorem 2.1, but also suggests the notion that LL (k)

grammar analysis is not affected by the introduction of actions. Theorems 2.2 and Corollary 2.1

show that LR (1) is not equivalent to LR (k) when actions can be introduced arbitrarily and that,

unfortunately, LL (k) is the largest class of languages that can be generated with a context-free

grammar augmented arbitrarily with actions; hence, using k >1 terminals of lookahead greatly

increases the strength of a particular parsing method. For completeness, in the next section, we

15

explore how the LR derivatives compare to LL.

2.2.2 LALR and SLR Versus LL

The results of the previous section provide the framework for re-examining the relationship

between LR-derivative grammars and LL grammars when actions may be placed arbitrarily

among the productions. As one might expect, because LL and LR are equally strong for transla-

tion purposes, the LR derivatives, which are weaker than LR, are weaker than LL. This section

we extend Brosgol’s work by showing that LALR (k) ⊂ LL (k) and SLR (k) ⊂ LL (k) whereas,

without actions, no strict ordering is observed.

Because LALR (1) is a subset of LR (1), one can observe that if a grammar G, augmented

with actions on all production left-edges, yielding G’, is LALR (1), the original grammar G must

be LL (1). The following corollary states this supposition formally.

Corollary 2.2: G’ ∈ LALR (k) is a sufficient condition for the corresponding grammar, G, to be

LL (k); where G’ is constructed as in theorem 2.1.

Proof:

Since LALR (k) ⊂ LR (k) [ASU86], if G’ is LALR (k) then it is also LR (k).

G’ ∈ LR (k) ⇒ G ∈ LL (k).

Note that the opposite of corollary 2.2 is not true; G ∈ LL (k) does not imply

G’ ∈ LALR (k). G may still be LL (k) even if G’ is not LALR (k) because there is no strict order-

ing between LALR (1) and LL (1) for grammars without actions. For example, the following

grammar, in YACC notation, is LL (1), but not LALR (1).

E →
D → E

C → E

B → Da

B → Cb

A → Db

A → Ca

S → bB

S → aA

G2.3

The problems for LALR (1) arise from the permutations of C, D, a, and b in rules A and B that

make FOLLOW1(C) and FOLLOW1(D) the same; therefore, lookahead cannot be used to guide

the parser when reducing C and D. Once the lookahead has been effectively removed from con-

sideration, the parser must rely upon context (state) information. Unfortunately, the grammar is

not LALR (0); this fact, combined with the FOLLOW1 overlap, renders the grammar non-

16

LALR (1). A reduce/reduce conflict between rules C and D is unavoidable.

Corollary 2.2 states that all LALR (k) grammars, with actions arbitrarily interspersed among

the productions, are LL (k). Further, there are grammars which are LL (k), but not LALR (k). Con-

sequently, one may state that LL (k) is strictly stronger than LALR (k).

Corollary 2.3: LALR (k) ⊂ LL (k) when actions may be placed arbitrarily among grammar pro-

ductions.

Proof:

Let G’ be a grammar augmented with actions. G’ ∈ LALR (k) ⇒ G ∈ LL (k) by Corollary 2.2,

therefore, any LALR (k) grammar is LL (k) if one is free to place actions on the left edge. There

exist LL (k) grammars which are not LALR (k) such as Grammar G2.3; hence, LL (k) is strictly

stronger than LALR (k) in the worst case action-placement scenario.�
Because LALR (k) is known to be a proper superset of SLR (k) the relationship between

SLR (k) and LL (k), follows trivially:

Corollary 2.4: SLR (k) ⊂ LL (k) when actions may be placed arbitrarily among grammar produc-

tions.

Proof:

SLR (k) ⊂ LALR (k) and LALR (k) ⊂ LL (k), therefore, SLR (k) ⊂ LL (k) by transitivity when

actions may be placed arbitrarily.�
Previously, LL (k) was considered weaker than LR (k) and somewhat weaker than LALR (k)

and SLR (k) in practice. We have shown that, at least in theory, LL (k) is as strong as LR (k) and

stronger than LALR (k) and SLR (k) when grammars are arbitrarily augmented with actions. It is

interesting to note that the relationship between SLR, LALR and LR does not change with arbi-

trary action placement; i.e. SLR (k) ⊂ LALR (k) ⊂ LR (k) which follows directly from Corollaries

2.2, 2.4, and Theorem 2.1.

Augmenting an LR grammar with semantic actions can introduce ambiguities because pro-

ductions must be ‘‘cracked’’ to create reductions corresponding to the action positions. This is

well known to anyone who has developed translators based on LALR (1) grammars. Murphy’s

Law predicts that the position in a grammar where an action is needed most is precisely the posi-

tion where rule cracking will introduce an ambiguity. In contrast, LL (1) grammars are insensi-

tive to action placement, but many useful grammars are not LL (1).

Parsers are currently restricted to a single terminal of lookahead primarily because LR (1),

upon which most parsers are based, is theoretically equivalent to LR (k) and because k >1 termi-

nals of lookahead can lead to exponentially large parsers. Algorithms for constructing LR (k) and

LL (k) parsers can also be significantly more complicated than those for LR (1) or LL (1) parsers

and, are generally, not considered worth the effort. However, k >1 terminals of lookahead are

necessary in order to relax the sensitivity of LR grammars to action placement and to increase the

17

recognition strength of LL parsers. Although k terminal lookahead presents some challenges in

implementation, the difficulties can be overcome as proposed by this thesis. The next section

describes how other researchers have attacked the problem of deterministic parsing using k >1

terminals of lookahead and contrasts these strategies with our approach.

2.3 Comparison to Previous Work in LL (k) and LR (k) Parsing

LL (k) [RoS70] and LR (k) [Knu65] parsing has been studied vigorously from a theoretical

perspective; e.g., the research of [AhU72, DeR71, HSU75, Knu71, LeS68, Sip82, SiS82, SiS83,

SiS90, Ukk83]. Practical construction of such parsers and their variants has been largely avoided

due to the apparent unavoidable exponentiality in k. Indeed, very few papers actually consider

computing lookahead information for k >1 ([ADG91, KrM81] are exceptions). Most practical

work has centered around the k =1 case, e.g., [DeP82, Ive86, Joh78, MKR79, Pen86] and com-

mon textbooks such as [ASU86, FiL88].

It has long been known that modulating the lookahead depth according to the needs of each

inconsistent parser state can reduce parser size; e.g., [DeR71] suggested this in his paper on

SLR (k). Others have taken this one step further to allow infinite regular lookahead languages

[BeS86, CuC73] instead of normal k-bounded regular languages. We use varying amounts of

lookahead in order to reduce the time required to compute lookahead information as well as to

reduce the resulting parser size. [KrM81] does not consider modulating k when computing

LALR (k) lookahead sets and indicates that k =1 is the practical lookahead depth for their method.

[ADG91] defers computation of lookahead sets for LR (k) parsers until parser runtime and uses

only as much lookahead as necessary to make each decision. A similar technique can be used

statically, which we employ for the variants of LL (k) and LR (k), at grammar analysis time, to

compute only that lookahead information necessary to render a state deterministic and for only

those states needing lookahead.

Virtually all parsing theory work considers the lookahead k-tuples associated with a deci-

sion state to be atomic. On the other hand, we consider individual terminals to be atomic, which

results in greater flexibility with regard to grammar analysis and parser construction. We define

LL 1(k) and LR 1(k) parsers that examine only individual terminals at the various lookahead

depths and no m-tuples (1≤m ≤k). These parsers use a covering approximation to full lookahead

sets — with potentially linear time and space lookahead computation complexity that reduces

lookahead information size from O (| T | k) to O (| T | × k). The approximate lookahead sets can

be used to construct efficient decisions which handle most parsing decisions. Chapter 7 discusses

the generalization of LL 1(k) and LR 1(k) decisions to LL m(k) and LR m(k) decisions, which com-

pare subsequences of size at most m (composed of terminals from contiguous or noncontiguous

lookahead depths).

18

To facilitate parsers that use only the necessary information to make state transitions,

parsers with heterogeneous states must be constructed. Most parsing work revolves around

parsers composed of tables and an interpreter: The parsers have homogeneous states; i.e. each

state must be as complex as the most complex needed to parse the particular language of interest.

[BeS86, CuC73] build different cyclic-DFA lookahead decisions at each LR (0) nondeterminism,

but still employ states that are homogeneous, as each state may have a lookahead DFA.

[ADG91] compute lookahead at parse time, rather than at analysis time, by adding a new LR

action called look; again, parser states are homogeneous. [Pen86] developed a parser generator

that generates non-interpretive LALR (1) parsers in 8086 assembly language. Later, [Rob90]

developed a similar method of encoding non-interpretive bottom-up parsers called ‘‘Recursive

Ascent’’ parsers. Both of these authors were concerned with parsing speed. On the other hand,

we are concerned with varying the complexity of decision states to reduce the exponential worst-

case nature of LL (k)- and LR (k)-based parsers to near-linear typical behavior.

Algorithms for computing k >1 lookahead sets are rare and typically operate on canonical

LR (0) machines (e.g., [KrM81]) or the grammar itself. If lookahead depths greater than one are

to be used, practical algorithms and data structures for computing lookahead sets, ensuring parser

determinism, and parser construction must be developed. We represent grammars as a group of

NFA’s, called grammar lookahead automata (GLA’s), which cover the language generated by the

CFG. Because lookahead strings form a finite regular language, we consider lookahead informa-

tion to be acyclic DFA’s, which we encode as child-sibling trees. Lookahead computations can

then be elegantly described as a form of constrained traversal of a GLA; the computation is simi-

lar to NFA to DFA conversion. To further simplify lookahead computation, we define lookahead

operations as LOOKk rather than as combinations of FIRSTk and FOLLOWk.

The literature discusses the LL (k) and LR (k) classes separately. While the two strategies

are very different in terms of parser state construction, they are identical in terms of how they

make parser lookahead decisions. The only difference between an LL (k) parser decision state

and an LR (k) parser decision state is the type of actions induced by the lookahead information.

For example, an LL (k) parser may ‘‘predict’’ a production upon some terminal sequence whereas

an LR (k) parser may perform a ‘‘shift’’ or ‘‘reduce’’. We abstract lookahead decisions, regard-

less of the parsing method, to an induces relation that maps lookahead sequences to parser

actions. In this manner, many aspects of LL (k) and LR (k)-based parsing may be discussed

together.

Previous tests for the various grammar properties have complexities that are always

exponential in nature and do not compute the lookahead sets needed for parser decision states.

Our method computes lookahead sets and compares them to determine if the appropriate property

is satisfied. This grammar-driven approach enables us to use minimal lookahead and to compute

lookahead only for those decisions that require it. Figure 2.2 summarizes the methods used to

test grammars for LL (k) determinism.

19

� �
Method Description� �� �

This method transforms the LL (k)/SLL (k) determinism

problem into the LR (k)/SLR (k) determinism problem

which can be solved in space O ((k +1)2 × | G | 2) and in

time O ((k +1)3 × | T | k × | G | 2) [HSU75]. Using the

results of [Bro74], [HSU75] showed that the LL

determinism problems were easily reducible to LR

determinism problems and, hence, they could be solved

in the same space and time complexity. These

algorithms rely upon the construction of a set of

automata denoted MLR (u)(G) (in the notation of

[SiS90]), for some CFG G, which accepts those viable

prefixes of G which may be followed by u ∈ T k in some

right sentential form [HSU75].

Transformation to LR

� �
A dual to the usual LR canonical parser exists for LL

[SiS82, SiS83, SiS90]. Similarly, [Si83, SiS90] present

a scheme for LL (k) and SLL (k) testing which dualizes

the construction of MLR (u)(G) automata for LR, yielding

MLL (u)−set(G). This dual test is more efficient than

transforming to LR and using the LR testing algorithms.

Specifically, testing for the LL (k) property is a factor of

| G | faster than testing for the LR (k) property, but

introduces an extra 2k term: it can be solved in space

O (2k × | G |) and in time O ((k +1) × 2k × | T | k × | G |).

Dual of LR

� �
Computes lookahead sets for each alternative production

at a decision point and verifies that the lookahead sets

have no lookahead sequences in common up to a depth

of k. Lookahead sets rarely grow to the upper bound of

O (| T | k) in size and rarely need all k terminals; hence,

an algorithm that examines only those permutations of

T k which are necessary for each decision is potentially

useful in practice. Comparing production lookahead sets

has exponentially complex time and space requirements

like the other methods, but performs better in practice;

e.g., testing for the SLL (k) property is

O ((| G | + | P | 2/ | N |) × k × | T | k).

Compare lookahead sets

� �

Figure 2.2 Comparison of LL (k) Determinism Methods

20

The previous methods are obviously impractical as they test multiple automata against per-

mutations of length k sequences of terminals. This is not useful because | T | k is impractical for

even small | T | and k. Table 2.2 demonstrates the impracticality of the previous analysis algo-

rithms. It reflects how much time is required to create | T | n lookahead n-strings and print them

to the null device (/dev/null). The times do not include the effort that would be necessary to

examine the small automaton, MLL (u) , associated with each input permutation u.

Table 2.2 Time to Create | T | n Lookahead Permutations (| T | =100)

� �
create | T | n lookahead n ≤4� �
permutations 1 2 3 4� �� �
time (secs) 0.0 0.9 146.2 53564.3� ���

��
��

��
��
��

��
��

��
��

��
��

��
��
��

Computing and then comparing lookahead sets has an additional advantage over the theoretical

methods: Productions may easily be tagged with the lookahead sequences which render the asso-

ciated decision nondeterministic. Very specific warning messages may be reported.

Thus far, we have provided motivation for the use of k >1 terminals of lookahead and

described how others have attacked the problem of constructing LL (k) and LR (k) parsers. The

next section provides an impractical, but useful way to view parsing. Specifically, we define an

optimal parser which examines each input symbol at most once; in order to reduce the number of

lookahead inspections, an optimal parser construction algorithms would have to consider indivi-

dual terminals rather k-tuples and would construct parsers that make decisions of varying com-

plexity. Using this fundamental change of perspective, Chapters 3 and 4 develop methods for

constructing practical LL (k)- and LR (k)-based parsers.

2.4 Optimal Parsing of Deterministic Languages

In theory, parsers change state by examining a k-tuple and then shifting the input by at most

one symbol (terminal), which implies that tokens will be tested at least k times. LL (k) and LR (k)

parsing is widely held to be time O (n) for an input of size n; however, the time complexity is

more precisely O (k × n). The ability to construct parsers that examine each input symbol exactly

once, regardless of k, has little impact on parsing speed as n is normally much larger than k; how-

ever, this notion emphasizes the fact that parser decisions can reduce their time and space com-

plexity by using less than the maximum lookahead depth and/or by ignoring some lookahead

depths.

21

Our approach to parsing for k >1 relies upon the idea that individual terminals, rather than

k-tuples, are the basic, atomic, entity of parsing. Optimal parsing can be seen as motivating the

‘‘splitting’’ of the k-tuple atom. This new definition that a terminal comparison is an atomic

operation directly motivates the linear approximations LL 1(k) and LR 1(k) which compare 1-

tuples (sets) rather than k-tuples; see Section 3.7.1 for a precise definition. Further, we denote

parsers or parsing decisions, whose largest atomic operation is an m −tuple comparison, LL m(k)

and LR m(k); see Section 7.24.

Parsers normally examine lookahead to make a decision and then promptly ‘‘throw out’’

much of the information thus obtained. An optimal parser must record the result of decisions by

state splitting — i.e. split states that have at least one edge that is traversable by more than one

lookahead sequence and then remove impossible items from each of the new states. The new

states/edges indicate that a certain lookahead configuration was seen and, hence, the set of possi-

ble future actions is smaller for each of them. The number of new states replicated for a given

state (for both LR (k) and LL (k)) will be roughly equal to the number of possible unique input

sequences that induce a transition to that state. Both LR and LL parsers may employ this scheme

even though they record lookahead configuration information differently.

This section demonstrates state splitting for LL (k) and LR (k)-based parsers and, for LL (k)

grammars, defines an Optimal Normal Form (ONF) which yields optimal parsers using normal

construction techniques.

2.4.1 Structure of Parser Comparison Sequences

Conventional parsing examines each input symbol k times. However, an optimal parser

inspects each input symbol at most one time regardless of the size of the lookahead buffer, k.

This section illustrates the structure of lookahead decision sequences for conventional parsers,

optimal parsers and hybrid parsers that use a variety of decision templates.

Figure 2.3 illustrates the usual parsing strategy, for k =3, of comparing 3-tuples, shifting the

input by one, and then comparing another 3-tuple; δi(τ1 , τ2 , τ3) is the i th 3-tuple decision, based

upon the lookahead buffer (τ1 , τ2 , τ3), and ai is the i th input symbol (token).

22

...........
...
...
...
...
...
................................

a 2a 1 a 3 a 4 a 5 a 6 ...
δ1

δ3

δ4

δ2

Figure 2.3 Conventional Parsing for k=3

The dotted box associated with decisions δ2 ... δ4 highlights that after the first k tokens have been

read, each token, τi , will be examined k times. In contrast, an optimal parser might perform the

sequence of comparisons illustrated in Figure 2.4.

δ3δ2

a 2a 1 a 3 a 4 a 5 a 6 ...

δ1

Figure 2.4 Optimal Parsing for k=3

Many decisions can also be made from contextual information alone; i.e. no lookahead is needed

at all. Therefore, an optimal parser may actually use fewer than one comparison per input token,

but generally, the number of comparisons depends on the parsing method.

If one could take advantage of the fact that the grammar had few constructs that required

three tokens of lookahead, one could make comparison sequences similar to that in Figure 2.5.

δ5δ4

a 2a 1 a 3 a 4 a 5 a 6 ...

δ3
δ2

δ1

Figure 2.5 Near-Optimal Parsing where k-tuple Is Not Atomic

Occasionally, a decision will require three tokens, but in general decisions are made using only

one token (or none at all).

23

2.4.2 Optimal LL (k) Parsing

LL (k) parsers have only type of action that need be induced by lookahead: Before recogni-

tion of a nonterminal begins, one of the alternative productions must be predicted using up to k

terminals of lookahead. If less than k symbols are consumed before the lookahead buffer must be

examined again, the parse is not optimal as input symbols will be examined more than once.

This section defines an optimal normal form (ONF) for LL (k) grammars for which a parser, built

in the conventional manner, is optimal. In addition, this section outlines a method for splitting

the states of an LL (k) parser to render it optimal.

A grammar comprised of productions that always have k terminals on the left edge will

result in an optimal LL (k) parser; such a grammar is said to be LL (k) optimal. Although many

definitions are possible, we define an optimal LL (k) grammar as follows:

Definition: A grammar is said to be in Optimal LL (k) Normal Form, denoted ONF, if each non-

terminal is of the form:

A → αmβm

...

A → α2β2

A → α1β1

where αi ∈ T k, βi ∈ (N ∪ T)* , m is the number of productions of A, and αi ≠ αj for i ≠ j; i.e. all

productions may be predicted unambiguously and without examining tokens needed for the pred-

iction of another nonterminal’s productions. Our definition of ONF is similar to Greibach Nor-

mal Form [Gre65] except that we restrict our discussion to LL (k) grammars, require k token

sequences on the left edge (versus one), and do not restrict the form of productions past the k-

sequence prefixes.

The simplest grammar in ONF is of the form:

A → α

which has no decision to make as there is a single production and, hence, a single choice; nonter-

minal A is LL (0). In contrast, the LL (2) Grammar G2.6 has two decision points (on the left edges

of A and B):

B → d

B → c

A → aB

A → ab

G2.6

For nonterminal A, lookahead set (a,c), (a,d) induces a predict A → aB action. The τ2 looka-

head components c and d used to predict A’s productions will be matched in B, which must also

be used to distinguish between B’s alternative productions. Hence, this grammar is not in an

24

optimal form as at least one input symbol will be inspected more than once. In general, examin-

ing an input symbol in one decision excludes its use by any other decision. Figure 2.6 presents

the LL (2) machine. Most transition arcs are labeled as a where a is the input to be consumed

during transition; transitions out of production prediction states consume no input and are of the

form ε | v where v is the lookahead component which must be present to make the transition.

Calls to other nonterminals are as edges labeled with the nonterminal name (upper-case Latin

letter). Some states are labeled for reference in the text.

SA

S 1

ε | ab a b ε

ε | ac,ad a B ε

SB
ε | c c ε

ε | d d ε

Figure 2.6 LL (2) Machine for Grammar G2.6

To make a transition out of state SA , we examine (τ1 ,τ2). Entering state S 1 by traversing edge

ε | ac,ad does not record which of ac or ad was found on the input stream. Later, in state SB , the c

or d must again be used to distinguish between productions. This is the source of Grammar

G2.6’s nonoptimality. If one were to split state S 1 into two new equivalent states, the results of

the prediction in state SA could be ‘‘remembered’’. Figure 2.7 shows the results of splitting state

S 1 .

25

SA

S 1

S 1 ′

ε | ab a b ε

ε | ac a B 1 ε

ε | ad a B 2 ε

SB1
ε | c c

SB2
ε | d d

Figure 2.7 Partial Optimal LL (2) Machine for Grammar G2.6

Splitting state S 1 into S 1 and S 1 ′ affects the states reachable from S 1 and S 1 ′ (duplicates and

simplifies) because more information is available than before as to what is coming on the input

stream. For example, state SB1
no longer has a decision to make because the previously present

states for B → d cannot possibly be visited. Similarly, state S 1 ′ has only one transition as B → c

cannot possibly be applied.

Splitting the decision state S 1 to ‘‘remember’’ the results of examining τ1 and τ2 ,

corresponds to duplicating A → aB and separating the productions of B. Separating B’s produc-

tions removes a decision because the correct production to match will be determined by the

invoking nonterminal, A. Figures 2.6 is to Figure 2.7 as Grammar G2.6 is to Grammar G2.7.

B 2 → d

B 1 → c

A → aB 2

A → aB 1

A → ab

G2.7

Parser state splitting is analogous to the instantiation of nonterminals in the grammar domain.

For example, Grammar G2.8 is the same as Grammar G2.6 except that the productions of B have

been instantiated into the reference to B in nonterminal A, which yields an optimal grammar.

A → ad

A → ac

A → ab

G2.8

Occasionally, instantiation will force left-factoring, which is not always possible when grammars

are augmented with semantic actions. For example, consider Grammar 2.9 which represents an

LL (1) grammar after instantiation of some nonterminal into A. It must be left-factored to remain

26

LL (1).

A → b � 2 d

A → b � 1 c

A → ab

G2.9

After left-factoring, we obtain Grammar G2.10.

B → d

B → c

A → bB

A → ab

G2.10

If actions had been placed at positions � 1 and � 2 , however, this left-factoring could not take place

as actions cannot be merged. Lookahead decisions could be attached to actions to remember their

original context, but optimal parsers are intractable anyway; hence, we are not overly concerned

by this issue.

It is not always possible to generate optimal grammars by instantiation. Consider Grammar

G2.11.

B → d

B → c

A → a

A → ab

S → AB $

G2.11

Nonterminal A is nonoptimal as two symbols are required to predict the productions and the

second symbol is also required to predict the productions of B after the recognition of A. State

splitting can be done in several ways here, but one grammar transformation results in Grammar

G2.12.

B 2 → d

B 1 → c

B → d

B → c

A → aB 2

A → aB 1

A → abB

S → A $

G2.12

In this case, we have moved what follows the reference to A to the ends of the productions of A,

without changing the language. Then, instantiation proceeds as before. The reference to B in

A → abB is not instantiated for two reasons: First, it would cause Grammar G2.12 to become

non-LL (2) and, second, it is unnecessary to do so as there is a prefix of length 2. Another type of

state splitting can be done which records the result of the lookahead decision in B by returning to

27

a different state in A for each lookahead sequence.

This section defined an optimal normal form, ONF, for LL (k) grammars for which a parser,

built in the normal fashion, is optimal. Further, a scheme for splitting parser states was outlined

and was shown to be analogous to a grammar transformation. The next section characterizes

when LR (k) parsers need to split states to become optimal and provides an example state splitting

strategy.

2.4.3 Optimal LR (k) Parsers

The optimal LL (k) parsers of the previous section made decisions in the states associated

with the left edge of productions. LR (k) parsers, on the other hand, make lookahead decisions in

any state that is LR (0) inconsistent; i.e. any state with more than one item in the core that con-

tains a reduce item, A → α � . Optimal LR (k) parsers split states in a manner similar to optimal

LL (k) parsers. This section characterizes LR (k) parser state splitting via an example grammar

for which the LR (2) machine and optimal LR (2) machine are given.

Optimal LR (k) parsers have exactly one state transition arc per lookahead sequence, which

requires that target states be split. In this way, the results of each lookahead examination, per-

formed in some state p, are recorded for use by states reachable from p. Figure 2.8 shows a gen-

eric decision state.

A → α � β , γ1

...

B → α � , γ2

a | γ1

p:

q

Figure 2.8 Generic LR (k) Parser Decision State

where β = xβ’ and x ∈ V. Again, transitions are marked with α | β where α is the input terminal

to consume and β is the lookahead component that must be on the input stream to make the tran-

sition. If | γ1 | >1 then states reachable by that transition may be nonoptimal. Therefore, the tran-

sition γ1 out of state p must be separated into transitions with only one lookahead sequence,

which forces duplication of q — one for each element of γ1 .

To better illustrate optimal LR (k), consider Grammar G2.13, which is LR (2).

28

B →
B → b

A →
A → aBc

S → Aa $ $

G2.13

A partial LR (2) machine, in the notation of [ASU86] except for the u | v edge notation, is given in

Figure 2.9.

S → � Aa$$, $$

A → � aBc , a$

A → � , a$

A → a � Bc , a$

B → � b , ca

B → � , ca

B → b � , ca

a | ab,ac

b | bc

S 1:

S 2:

S 3:

Figure 2.9 Partial LR (2) Machine for Grammar G2.13

In state S 1 , input a induces a shift for A → � aBc and a reduce for A → � . Hence, a lookahead

depth of two is required — input ab and ac induce a shift for A → � aBc and input a$ induces a

reduce for A → � . The second input symbol, one of {b,c,$}, will be used again to induce a shift

for B → � b or a reduce for B → � ; Grammar G2.13 is nonoptimal.

The LR (2) machine in Figure 2.9 can be made optimal by splitting S 2 and then

duplicating/simplifying all states reachable from S 2 . Such an optimal machine is given in Figure

2.10.

29

S → � Aa$$, $$

A → � aBc , a$

A → � , a$

A → a � Bc , a$

B → � b , ca

B → b � , ca

A → a � Bc , a$

B → � , ca

a | ab a | ac

b | bc

S 1:

S 2:

S 3:

S 2 ′:

Figure 2.10 Partial Optimal LR (2) Machine for Grammar G2.13

States S 2 and S 2 ′ are simplified because the transitions entering them have only a single looka-

head sequence; e.g. the previous item B → � can no longer be reached because input sequence ac

will no longer force a transition to state S 2 . State S 3 is duplicated, but simplification removes all

its items and, therefore, it disappears.

Optimal LR (k) and LL (k) parsers are very similar. Both split states (duplicate subgraphs)

to ‘‘remember’’ the terminal sequence matched on the input stream. After splitting, transitions

will have only one terminal sequence in the lookahead component of the transition label.

Because of these simplified transition arcs, the states in the duplicated subgraphs will be much

simpler as the set of possible items will be greatly diminished. The only real difference between

optimal LL (k) and LR (k) parsers is that, generally, a parser transformation has a corresponding

grammar transformation for LL (k) parsers. With regards to error detection, optimal parsing

detect errors exactly as early as before except that the recognition may occur in a different state

due to state splitting. Splitting states increases the context information available to a parser and,

hence, will not delay error detection. Normally, error detection is delayed only by inaccurate loo-

kahead routing information. For example, SLL (k) parsers have less accurate lookahead informa-

tion than LALL (k) parsers; the effect is that SLL (k) parsers do not detect errors as quickly as

LALL (k) parsers even though both parsers have the same number of states.

The method of obtaining optimal parsers described in this section does not consider user-

defined semantic actions. A more general approach would attempt to liberate the actual looka-

head examinations from the decision states in an effort to avoid left-factoring, which cannot be

generally done in a grammar augmented with actions, and explosive state splitting. We did not

explore this issue due to optimal parsings fundamental lack of practicality.

30

In this chapter, we gave motivation for the use of k >1 terminals of lookahead and provided

a comparison of our approach to the previous work done in the area of LL (k) and LR (k) parsing.

Our strategy revolves around parsers that make decisions of varying complexity and parser deci-

sions that consider terminals, rather than k-tuples, atomic entities; optimal parsing can be seen as

inspiring this strategy. The next two chapters use the observations given in this chapter to pro-

vide a framework for grammar representation, parser state construction, decision state abstrac-

tion, lookahead computation, and lookahead representation.

31

CHAPTER 3 PARSING

The previous chapter described why more than a single lookahead symbol is needed and

outlined why the work done previously, in the area of LL (k) and LR (k) parsing, is mostly

impractical. To provide a practical means by which parsers with large lookahead buffers may be

constructed, we must dispense with the norm of homogeneous parser states, uniform lookahead

depth, and atomic k-tuples as in Section 2.4 on optimal parsing. This necessitates a nontrivial

change of perspective with regards to parser construction. Hence, this chapter presents new ways

to think about representing grammars, parsers, and parsing decisions.

For the purpose of grammar analysis, we store grammars as a group of intertwined NFA’s,

called grammar lookahead automata (GLA’s), that represent the collection of all possible looka-

head languages for all grammar positions. In fact, GLA’s realize a covering, regular approxima-

tion to the underlying CFL of the grammar. The lookahead sequences for a particular parsing

strategy of depth k for a position in the grammar correspond to a subset of the sequences of non-ε
edges along the walks of length k starting from the associated GLA state. Lookahead computa-

tions are described as bounded walks of a GLA where the lookahead sequences are encoded as

lookahead DFA; in practice, we represent the lookahead DFA as child-sibling trees. The reader

will notice a similarity to NFA to DFA conversion.

Different decision states may have different lookahead requirements. Section 3.7.2 pro-

vides empirical data that suggests that the vast majority of lookahead decisions, 98.57% in our

study of 22 SLL (k) grammars, can be handled with no lookahead or with a single lookahead sym-

bol. When more than a single token of lookahead is required, it is often the case that a linear

approximation to the normal, exponential lookahead information can be used. We define C 1(k)

decisions as decisions that look no more than k terminals into the future and compare at most 1-

tuples (sets of terminals). To facilitate parsers that take advantage of these decision states of

varying complexity, we describe a mechanism for representing parsers with heterogeneous states

in Section 3.6.

The various parsing strategies construct parsers with different states and state actions, but

the lookahead decisions within decision states are identical. We abstract the concept of a

lookahead-to-action mapping as a mathematical relation called induces in Section 3.7.4, which

isolates the required lookahead information (and it computation) from the details of implement-

ing the mapping. Thus, any transformation or compression on an induces relation is applicable

to any parsing strategy.

32

In general, this chapter describes the foundations upon which practical LL (k)- and LR (k)-

based parsers are built. We describe the representation of grammars, heterogeneous parsers, and

parsing decisions.

3.1 Grammar Representation

Grammar analysis computes lookahead sets for parser construction and for testing parser

determinism. Many algorithms operate on the grammars themselves (stored as simple lists of

productions) while some of the LR-based algorithms operate on the canonical LR machines. We

represent grammars, regardless of the parsing strategy, as a collection of NFA’s called grammar

lookahead automata (GLA’s), which realize a covering, regular approximation to the underlying

language of the grammar. GLA’s represent the collection of all possible lookahead languages for

all grammar positions. The possible lookahead sequences of depth k for a position in the gram-

mar correspond to the sequence of non-ε edges along the walks of length k starting from the asso-

ciated GLA state. The edges found along the walks can be recorded as deterministic finite auto-

mata (DFA’s), which we store as child-sibling trees. Consequently, all lookahead computations

for any LL (k) or LR (k) variant can be elegantly described as constrained walks of GLA’s.

Our GLA’s are reminiscent of the transition diagrams of [ASU86] except that only termi-

nals and ε may appear as transition (arc) labels. In addition, each nonterminal, A, has ε-

transitions emanating from its accept state which point the nodes immediately following refer-

ences to A. There exists a state in the GLA for each position in the grammar and a transition for

each terminal and nonterminal reference appearing in any production’s right-hand-side. To con-

struct GLA’s, we create a state, pi for each position (item) in the grammar and two states, pA and

qA for each nonterminal A where pA is the nonterminal entry and qA is the nonterminal accept

state; then, we construct GLA transition arcs as per the algorithm in Figure 3.1.

33

� �
Connect the states created for the positions � 1 and � 2

with a transition labeled a.

A → α � 1 a � 2 β

� 1 � 2
a

Make an ε-transition from the state created for � 1 to state

pA .

A → α � 1 A � 2 β

� 1 pA

A → � 1α Make an ε-transition from pA to the state created for � 1 .

pA � 1
ε

A → α� 1 Make an ε-transition from the state created for � 1 to qA .

� 1 qA
ε

A → αB � 1β Make an ε-transition from qB to the state created for � 1 .

qB � 1� ����
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��

Figure 3.1 GLA Construction from CFG

34

Dashed edges reflect ‘‘pointers’’ to other states; they are not drawn to increase clarity as their

inclusion would cause a spagetti effect. This representation of a grammar, G, effectively con-

structs a single NFA whose envelope covers the underlying context-free language, L (G). It

should be stressed that GFA’s are not purely NFA’s because a grammar-to-GLA-state mapping is

required.

The language of a GLA is generally larger than the underlying context-free language even

when L (G) is regular and it will be up to the algorithms themselves to determine which transi-

tions to follow in the GLA when collecting lookahead information. The sophistication of the

algorithm and, hence, the accuracy of this information will often be the distinguishing factor

between parser classes; e.g., SLR (k) and LALR (k) differ only in lookahead information [ASU86].

To illustrate the GLA construction algorithm, consider Grammar G3.1.

A → b

A → aAa
G3.1

The associated GLA is shown in Figure 3.2.

pA r qA
ε a pA

a ε r

ε b ε

Figure 3.2 GLA for Grammar 3.1

The language described by nonterminal A is L 1 = {a nba n | n ≥ 0} whereas the regular envelope

of the GLA is L 2 = {a *ba *}; hence, L 2 covers L 1 , L 1 ⊆ L 2 .

For the most part, GLA’s will be illustrated as if they were constructed via the algorithm in

Figure 3.1, however, this representation is idealized for discussion; in practice, slightly different

GLA’s are actually constructed. In an effort to reduce grammar-analysis algorithm implementa-

tion complexity, a convention concerning GLA states is followed — each state has at most two

arcs emanating from it, denoted p→edge 1 and p→edge 2 , where p→edge 2 is always labeled ε, if

it exists. Figure 3.3 shows how idealized GLA’s differs from the GLA’s actually used.

35

� �
Idealized GLA Implementation GLA� �� �
ε a

ε b

ε c

ε a

ε b

ε c

ε

ε

� ���
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

Figure 3.3 Idealized GLA versus Implementation GLA

In addition, because grammars are normally $k-augmented before analysis (S’ → S$k), a reflexive

$-transition to the GLA accept state of the start symbol such as that in Figure 3.4 is constructed.

$

Figure 3.4 $ k-augmentation of GLA’s

Section 4.9 describes lookahead operations in more detail and Section 4.8 describes the

representation of lookahead information itself. The next section describes how parsers may be

represented using automata with heterogeneous states.

3.2 Heterogeneous Automata in Deterministic Parsing

The previous section described how grammars may be represented in such a way that looka-

head computations are conveniently defined as GLA walks; it did not discuss how parsers could

be built from the grammars. While most parsers described in the literature employ parsers with

one type of parser state, this section describes how parsers may be constructed using automata

with different state types.

Parsers with large lookahead buffers that employ homogeneous automata (automata with

exactly one type of state) are impractical; they are unable to take advantage of the fact that not all

states require lookahead and, of the states that do, most require only a single token. To facilitate

the construction of parsers as championed by this thesis, a mechanism, by which automata with

many different state types can be described, is necessary — mere tables are insufficient.

36

A heterogeneous automaton is an automaton for which each state may perform a different

function; specifically, we are interested in states that make transitions by examining different

amounts of lookahead and by examining lookahead in different ways. The class of heterogeneous

automata includes recursive-descent parsers, heterogeneous LL-machines, and heterogeneous

LR-machines. Recursive-descent parsers typically have a function for each grammar nonterminal

and may naturally perform different operations at each decision point. In this section, we

describe heterogeneous LL and LR machines, which are exactly the same except for the actions

induced by lookahead examinations; Chapters 5 and 6 describe recursive-descent parsers in more

detail. Heterogeneous automaton states consist of a state label, a set of lookahead

inspection/action pairs, and a set of state actions; otherwise, these machines have the normal set

of terminal and vocabulary symbols, transition mapping, collection of states, accept states, and

start state. No implicit ordering for the lookahead inspections is specified, but the state actions

are executed only if none of the lookahead actions are executed and in the order specified. For

example, consider the template shown in Figure 3.5.

upon f 1(τ1 , ..., τk) perform lookahead_action 1

upon f 2(τ1 , ..., τk) perform lookahead_action 2

upon fm(τ1 , ..., τk) perform lookahead_actionm

state_action 1

state_action 2

...

state_actionn

Si:

Figure 3.5 Heterogeneous Automaton Template

The lookahead inspection functions, fi’s, have no implicit order so that no restrictions are placed

upon the mapping from lookahead to transition action; they may also be functions of the current

parser state. The state_actioni’s are not restricted in any manner (they may have local, global or

no effect) and are executed in the order specified.

Constructing a parser with heterogeneous states is essentially the same as for normal

recursive-descent, LL-machines or LR-machines. The sole difference lies in the focus of this

thesis — the realization of state transition functions for states that require lookahead. Transitions

can also occur without the need for lookahead. For example, LR-machines can change state

based upon the current stack-top symbol and LL-machines can change state without examining

anything (assuming valid input). Transitions that do not examine lookahead are simply state

actions.

37

The remainder of this section presents two examples that illustrate the construction of

heterogeneous LL- and LR-machines; the examples use different grammars because LL and LR

parsers generally need lookahead in different states. We begin with the implementation of an

LL-machine for Grammar G3.2.

C → ae

B → cd

B → ab

A → C

A → B

G3.2

Grammar 3.2 has two nonterminals with more than one alternative production and, hence, two

decision states exist in the LL-machine. Predicting alternatives of A requires a lookahead depth

of two, predicting alternatives of B requires a lookahead depth of one and C has no lookahead

requirements as there is only one alternative. The normal LL (2)-machine, akin to [ASU86], is

depicted in 3.6.

SA S 1

S 2

ε | ab,cd B ε

ε | ae C ε

SB S 3

S 4

ε a b ε

ε c d ε

SC S 5
a e

Figure 3.6 LL (2)-machine for Grammar 3.2

We have augmented the notation of [ASU86] to include the lookahead components on transition

arcs; i.e. ε | v where v is the lookahead component. The diagrams in [ASU86] are LL (1) and,

hence, the lookahead components are obvious whereas, here for k >1 they are not. Using a

heterogeneous state mechanism, states SA , SB , and SC could be represented by the states in Figure

3.7.

38

upon (τ1 , τ2) ∈ {(a,b), (c,d)} call S 1

upon (τ1 , τ2) = (a,e) call S 2

SA:

upon τ1 = a consume, goto S 3

upon τ1 = c consume, goto S 4

SB:

consume, goto S 5

SC:

Figure 3.7 Heterogeneous Automaton States SA , SB , and SC

States SB and SC would be unnecessarily complex if a homogeneous automaton were used

because each state is as complex as the state with the most complicated decision. Note that, since

nonterminal C has no decision to make, it may merge all states into one of the form depicted in

Figure 3.8 (assuming valid input). State SA can be reduced so that it only examines the second

token of lookahead, τ2 , because it uniquely predicts which production to apply; the first token of

lookahead has no routing information since a is a common prefix.

consume 2 symbols

return

SC:

Figure 3.8 Compression of States for Nonterminal C

Just as LL parsers can be described using heterogeneous automata, LR parsers can be

expressed using the heterogeneous automata state template. Consider Grammar G3.3, which

better illustrates LR’s different state requirements.

39

B →
A → ac

A → Bab

S → A$ $

G3.3

S → � A$ 2 , $$

A → � Bab , $$

A → � ac , $$

B → � , ab

A → B � ab , $$
B

A → Ba � b , $$
a

S 0:

S 1: S 2:

Figure 3.9 Partial LR (2)-machine for Grammar 3.3

A portion of the LR (2)-machine is shown in Figure 3.9. State S 0 requires a lookahead

depth of two to resolve the shift/reduce conflict between A → ac and B →. However, states S 1

and S 2 do not need to examine lookahead at all to effect a state switch — the transitions are a

function of the current state. Using the heterogeneous automata state templates, this partial

LR (2)-machine can be efficiently encoded as shown in Figure 3.10.

40

upon (τ1 , τ2) = (a,c) shift a, goto Si

upon (τ1 , τ2) = (a,b) reduce B →
upon reduction of B goto S 1

upon reduction of A goto Sj

S 0:

shift a, goto S 2

S 1:

shift b, goto Sk

S 2:

Figure 3.10 Heterogeneous Automaton States S 0 , S 1 , and S 2

where Si and Sj go to portions of the machine not shown. As before, state compression can be

performed; i.e. states S 1 and S 2 could be merged easily into a single state that shifts ab and goes

to Sk. LR parser compression has been studied in detail (e.g. [AhU73, DeM75, LaL76]), but this

very effective type of compression is uncommon because it is possible only when heterogeneous

states are considered.

Heterogeneous automata for both LL and LR parsers have been illustrated in this section. A

striking similarity exists between the machines for the two parsing strategies, which emphasizes

the fact that the states and the number of states may differ, but lookahead decisions are simply

mathematical relations. The next section explores this notion in detail.

3.3 Parsing Decisions

Parser construction is composed of three tasks: First, lookahead information must be com-

puted. Second, parser decision states must be built using this lookahead information. Thirdly,

the individual lookahead decision states are examined to ensure determinism. Convention wis-

dom has it that the tasks are impractical due to exponentially large lookahead requirements.

While the worst-case will always be exponential, the common case can be reduced to near-linear

performance; Section 3.7.1 describes a strictly linear decision type called C 1(k) that can often be

used as an approximation to full C (k).

41

This section characterizes when parsers need to examine lookahead and then provides a

mathematical relation, called induces, that abstracts parser decision state transitions and isolates

the required lookahead information from the details of implementing a mapping. In doing so, we

argue that LL (k) and LR (k) parsers are identical from a lookahead decision point of view.

3.3.1 C 1(k) Decisions

C (k) parser decision states typically have been considered a simple matter — k-tuples are

examined and the appropriate parser action is induced. The lookahead information being exam-

ined is exponentially large in the worst case and, thus, these decision states were explored from a

theoretical point of view. The work on LR-Regular languages [CuC73, BeS86] allows

unbounded regular lookahead languages instead of normal k-bounded regular languages to induce

parser action. But, these lookahead languages are recognized by DFA that are also exponentially

large. Just as the lookahead information for SLR (k) parsers is an inaccurate superset of the

LALR (k) information (SLR (k) parsers use context-independent sets and LALR (k) use context-

dependent sets [SiS90]), another type of covering approximation to lookahead information can be

defined that simplifies lookahead computation and reduces the size of decisions states to a linear

function of k.

We introduce C 1(k) decisions as decisions that examine at most k future terminals and use

only 1-tuple (set) comparisons to induce parser actions. The lookahead information for C 1(k)

can then be compressed to k sets of terminals, O (| T | × k), rather than the normal O (| T | k) k-

tuples. The i th set in the C 1(k) information is the collection of all terminals visible at depth i

starting from a grammar position where the definition of ‘‘visible’’ depends on the parsing stra-

tegy; C 1(1) is equivalent to C (1) because C (1) is also the set of terminals that can be matched

next — one terminal in the future. The definition of this approximate lookahead can be taken

advantage of when computing lookahead information and when constructing parser decision

states. Computing C 1(k) lookahead information is not forced into exponentiality by the size of

the information as is computing C (k) information. In the same sense, decision states are no

longer exponentially large because the approximate lookahead information is linear in size.

The C 1(k) space reduction comes at the cost of inaccuracy. For example, the two looka-

head tuples (a,b) and (c,d) that induce some parser action have C 1(2) lookahead set sequence

{a,c},{b,d}. The C 1(2) decision strategy, however, would map any tuple with {a,c} at looka-

head depth one and {b,d} at lookahead depth two to that parser action — 2-tuples (a,b), (a,d),

(c,b), and (c,d).

In general, all of the LL (k) and LR (k) variants can compute the approximate lookahead as a

quick first attempt to resolve C (0) nondeterminisms. Unfortunately, full LL (k) and LR (k) cannot

use this approximate lookahead during grammar analysis, but they may arrive at the same infor-

mation (the hard way) by compressing the full lookahead information. Any decision state may

42

take advantage of the C 1(k) information; Chapter 5 examines SLL 1(k) and Chapter 7 describes

how the other deterministic strategies may employ C 1(k) information and decision templates.

When C 1(k) decisions cannot be used in place of the full C (k) decisions (which are

exponential in k), it is important to reduce k to the minimum possible. The next section describes

the lookahead depths required for parser decisions with SLL (k) used as a vehicle for exploration.

3.3.2 SLL (k) Lookahead Characteristics

Most parser transitions require no lookahead — state information alone is sufficient to

determine a course of action. Even when lookahead is required to distinguish between state-

transition arcs, usually, only a single lookahead terminal is required. It is precisely this fact that

brings LL (k)- and LR (k)-based parsers for k >1 into the realm of practicality. Due to the

exponential state explosion for full LL (k) and LR (k), we focus on the linearly-sized variants. In

particular, we choose SLL (k) parsers as a practical, easy to construct alternative that demon-

strates out approach to parsing with large lookahead buffers.

This section presents statistics about the nature of SLL (k) parsing decisions that involve

lookahead. 22 sample grammars, submitted by PCCTS [PDC92] users, are analyzed for looka-

head requirements; see the Appendix for a description of the grammars. There are nondeter-

ministic decisions in most of the grammars, although these decisions are usually resolved

correctly during parser construction; e.g., the dangling-else-clause construct is non-LL (k), but is

handled correctly by matching the ‘‘else’’ as soon as possible.

Table 3.1 demonstrates that the vast majority of SLL (k) decisions, 98.57%, are SLL (0) or

SLL (1). A quick calculation indicates that, of the decisions that require lookahead, 98.81%

require only a single lookahead symbol.

43

Table 3.1 Lookahead Requirements for 22 Sample Grammars

� �
lookahead n ≤3 non-� �grammar | T | | N | decisions

0 1 2 3 SLL (3)� �� �
S1 81 113 311 198(63.6%) 107(34.4%) 3(0.9%) 0 3
S2 66 52 150 98(65.3%) 52(34.6%) 0 0 0
S3 52 89 230 141(61.3%) 87(37.8%) 0 0 2
S4 91 139 336 197(58.6%) 132(39.2%) 4(1.1%) 0 3
S5 69 119 338 219(64.7%) 118(34.9%) 0 0 1
S6 24 33 83 50(60.2%) 32(38.5%) 0 0 1
S7 26 44 93 49(52.6%) 35(37.6%) 0 0 10
S8 26 30 62 32(51.6%) 29(46.7%) 0 0 2
S9 40 22 99 77(77.7%) 21(21.2%) 0 0 1
S10 7 7 11 4(36.3%) 6(54.5%) 0 0 4
S11 12 13 20 7(35.0%) 13(65.0%) 0 0 0
S12 8 12 21 9(42.8%) 12(57.1%) 0 0 0
S13 14 12 26 14(53.8%) 12(46.1%) 0 0 0
S14 71 106 264 158(59.8%) 105(39.7%) 0 0 1
S15 182 371 1063 692(65.1%) 356(33.4%) 7(0.6%) 1(0.1%) 7
S16 24 34 98 64(65.3%) 30(30.6%) 1(1.0%) 0 3
S17 19 27 63 36(57.1%) 22(34.9%) 0 0 6
S18 67 91 232 141(60.7%) 89(38.3%) 0 0 2
S19 38 96 225 129(57.3%) 95(42.2%) 1(0.4%) 0 0
S20 64 119 214 95(44.3%) 118(55.1%) 0 0 1
S21 46 84 225 141(62.6%) 82(36.4%) 2(0.8%) 0 0
S22 15 31 54 23(42.5%) 31(57.4%) 0 0 0� ����

��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��

Table 3.2 averages the data found in Table 3.1. The average grammar has a vocabulary of

about 50 terminals, 75 nonterminals, and contains one decision requiring a lookahead depth

greater than one.

Table 3.2 Average Lookahead Requirements for 22 Sample Grammars

� �
lookahead n ≤3� �grammar | T | | N | decisions

0 1 2 3
non-SLL (3)� �� �

Average 47.3 74.7 191.7 117(61%) 72(37.5%) .8(.4%) .05(.02%) 1.8(.9%)� ����
�

���
�

���
�

���
�

���
�

�� �� �� ���
�

���
�

The empirical results of Tables 3.1 and 3.2 suggest that SLL (k) grammars are mostly

SLL (1). Because lookahead trees are simple, linearly sized sets of terminals when k =1 and

because SLL (k) parsers are linearly sized in | G | , SLL (k) appears to be nearly a linear problem.

Unfortunately, the few decisions that require k >1 lookahead incur the unavoidable exponential

cost, O (| T | k), of computing and storing lookahead sets; more statistics are provided in Section

6.17.1.

Parser transitions generally can be made without lookahead or with a single terminal of loo-

kahead. When more than a single terminal of lookahead is required, it is often the case that a

linear approximation to the full lookahead computation can be used. This section provided

empirical evidence that parsing with k >1 terminals of lookahead is practical because most

44

decisions, 98.57%, are SLL (0) or SLL (1). The complexity of the remainder of the decisions are

controlled by using the linear approximation SLL 1(k) as often as possible. The next section

examines when LOOK operations are required during grammar analysis; i.e. which parser states

must make lookahead decisions.

3.3.3 When Parsers Need Lookahead

LL parsers need to examine lookahead only at nonterminal decision points (on the left

edge); hence, they make at most | N | m-ary decisions where | N | is the number of nonterminals

and m is the number of productions for a particular nonterminal. LR-based parsers examine loo-

kahead in any state that has an LR (0) shift/reduce or reduce/reduce conflict. LL (k) parsers’ vora-

cious appetite for lookahead arises from its need to predict which production to apply before the

entire production has been scanned; LR (k) parsers see an entire production before deciding. In

this section, we explore when parsers make lookahead decisions via an example grammar and its

associated LL (3) and LR (1) machines.

Consider Grammar 3.4. The LL (3) machine is shown in Figure 3.11 and the LR (1)

machine is shown in Figure 3.12 with the lookahead component missing as it is always $.

A → a

A → ab

A → abc

S → A$$

G3.4

S A $

A ε | abc a b c

ε | ab $ a b ε

ε | a $ $ a ε

Figure 3.11 LL (3)-Machine for Grammar G3.4

45

S → � A$$

A → � abc

A → � ab

A → � a

A → a � bc

A → a � b

A → a �
A → ab � c

A → ab � A → abc �

S → A � $ S → A$ �

a b c

A

$

p :

Figure 3.12 LR (1)-Machine for Grammar G3.4

The LL (3) machine makes a single decision to parse any sentence — it examines (τ1 ,τ2, τ3) once

on the left edge of A, making a trinary prediction. In contrast, the LR (1) machine, which makes

decisions on the right edge, examines τ1 once for each reduction of the productions of A. The

LL (3) machine always makes exactly three token inspections to predict a production, whereas the

LR (1) parser makes a single token inspection at each transition in the reduction of A.

In general, LL (k) parsers make decisions of the form:

A → � αm

...

A → � α2

A → � α1

where αi ∈ V * . LR (k) parsers examine lookahead terminals whenever an item pairs of the form:

B → α �A → α � β

where α,β ∈ V * , or

D → α �C → α �
are in the core of a state, where A and B are not necessarily different. Only states with at least

one item of the form ‘‘A → α � ’’ are candidates for lookahead decisions. There is no such thing

as a shift/shift conflict because the parser will always shift the current symbol from the input to

the symbol stack until it finds a handle.

The discussion of LL (k) and LR (k) presented in this section assumes that heterogeneous

automata are constructed in direct contrast to most parser generators; i.e. the left-edge LL (3) loo-

kahead decision of A does not force all states in the parser to examine lookahead. Clearly, if only

one arc emanates from a state, any prediction decision is obvious. This simple optimization

46

cannot be done using homogeneous automata as all states either examine lookahead or they do

not.

Although LL (k) and LR (k) parsers have different states, examine lookahead at different

times, compute lookahead from different grammar positions, and maintain different state infor-

mation, lookahead states are virtually indistinguishable — both parsers’ decision states map loo-

kahead sequences to parser actions and state transitions. The next section abstracts this notion to

a mathematical relation called induces.

3.3.4 How Parsers Use Lookahead

If one considers the mechanism by which parsers examine lookahead, as opposed to in

which state and when during the parse lookahead is examined, the difference between LL and LR

vanishes. Formally, any lookahead decision is a relation induces from T’ ⊆ T k to a finite set of

parser actions; e.g., ‘‘predict A → α’’ (LL) or ‘‘reduce A → α’’ (LR). In Figure 3.11, (a,b, $)

induces ‘‘predict A → ab’’ and, in state p of Figure 3.12, $ induces ‘‘reduce A → ab’’. Regard-

less of the range of induces (the set of possible parser actions), examining lookahead remains a

simple relation on a subset of T k. For example, consider the LL (3) induces relation in Table 3.3

for state A of Figure 3.11.

Table 3.3 LL (3) induces Relation for State A of Figure 3.11

� �
Lookahead (τ1 ,τ2 ,τ3) ∈ T 3 Action� �� �

(a,b,c) predict A → abc

(a,b, $) predict A → ab

(a, $, $) predict A → a� ���
��
��
�

��
��
��
�

��
��
��
�

The lookahead 3-tuple on the left induces the parser actions listed on the right. Clearly, an

induces relation, and hence a decision state, is deterministic when no lookahead induces more

than one action — e.g., no k-tuple predicts more than one production (LL) and no k-tuple induces

a shift and a reduce or induces a reduce of more than one production.

It is convenient to give each action for a given decision a unique number such that the range

of induces is a subset of the natural numbers; induces then maps T’ → {1, 2, ..., m}. In the case

of LL, m is the number of productions for a nonterminal. For LR, m is the number of conflicting

LR (0) items in a state requiring lookahead. In this manner, a generic C (k) parser state can be

manipulated without concern for the parser strategy.

47

This abstract lookahead mapping can be viewed as a k-dimensional vector plot. For exam-

ple, consider the induces mapping in Table 3.4, which is plotted in Figure 3.13.

Table 3.4 Example C (2) induces Relation

� �
Lookahead (τ1 ,τ2) ∈ T 2 Action ∈ {1..3}� �� �

(c,b) 1

(a,e) 1

(d,c) 2

(c,d) 2

(f ,c) 2

(e,a) 3�

τ2

τ1

a

b

c

d

e

a b c d e f

1

1

2

2

2

3

Figure 3.13 Example induces Relation Plot

Constructing a parser lookahead decision amounts to finding an efficient implementation of

induces — generating a discriminant function that deterministically classifies a feature vector to

one of m classes (using AI terminology). If a lookahead k-tuple induces more than one action,

the underlying grammar is not deterministic; graphically, if any two vectors that map to different

actions, have coincidental endpoints, no discriminant function can be found.

Observe that, when the lookahead vectors in Figure 3.13 are projected onto the τ2 axis, a

very efficient discriminant function may be found; precisely, a simple set operation on τ2 . This

48

operation is analogous to simplifying the relation to that of Table 3.5. According to Section

3.7.1, we may denote this type of decision as C 1(2) because a lookahead depth of two is required

and a 1-tuple (set) comparison is the largest atomic operation; Chapter 5 describes these decisions

in more detail for SLL 1(k).

Table 3.5 LL 1(2) induces Relation

! !
Lookahead τ2 ∈ T Action ∈ {1..3}! !

{b,e} 1

{c,d} 2

{a} 3! !""
""
""
"

""
""
""
"

""
""
""
"

This chapter provided a new perspective from which to view LL (k) and LR (k) parser con-

struction. We developed convenient methods for representing grammars, describing parsers with

heterogeneous states, and for viewing parsing decisions. Section 3.5 represented grammars as a

collection of NFA, denoted GLA’s, that are used to define lookahead computations in the next

Chapter. Section 3.6 illustrated how parsers with states of varying complexity could be

represented. In Section 3.7, we introduced linear approximate C 1(k) decisions, characterized

when parsers look ahead, and abstracted the notion of a parsing decision to the induces relation.

The SLL (k) lookahead requirements for 22 sample grammars were empirically studied in

Section 3.7.2. We found that 98.57% of all SLL (k) decisions were correctly mapped using k ∈
{0,1} and that 98.81% of all decisions that required lookahead could be mapped with a single ter-

minal of lookahead. This empirical data supports our claim that LL (k) parsers are practical

because when, k ∈ {0,1}, | T | k is not an exponential; recall that parsers with heterogeneous

states are required to take advantage of the varying lookahead requirements of decision states.

One can extrapolate that LR (k)-based parsers are practical as well because SLL (k) is weaker than

LL (k) and LR (k) is stronger than LL (k) — LR (k) must surely use less lookahead than SLL (k).

We abstracted parsing decisions to a mathematical relation called induces that summarizes

a decision state mapping of lookahead sequences to parser action. The induces relation allows us

to discuss deterministic parsers generically as they are all identical from a lookahead decision

state point of view. In addition, induces allows us to isolate the computation of lookahead from

the implementation of the mapping itself.

The following chapter examines parser lookahead, as derived from the GLA’s described in

this chapter, and how lookahead may be represented and computed. The cost of computing loo-

kahead is also explored in depth.

49

CHAPTER 4 PARSER LOOKAHEAD

When state information alone is insufficient to determine parser action, lookahead informa-

tion is used to induce the correct state change. Traditionally, lookahead information is computed,

stored, and tested as sets of k-tuples where k is the lookahead depth. As discussed in this thesis,

however, lookahead terminals must be considered as individual entities rather than as k-tuples.

This necessitates a nontrivial change of perspective with regard to parser construction and gram-

mar analysis. Pursuant to this, the previous chapter described how parsers with states of varying

complexity could be described, how grammars could be stored in an advantageous manner with

respect to lookahead computation, and how decision states could be abstracted to a mathematical

relation called induces that maps lookahead symbols to parser actions; this chapter delves into

the definition and representation of parser lookahead.

Although the various deterministic parsing strategies maintain different state information

and use different lookahead strings, canonical lookahead operations and lookahead string

representations can be very similar between strategies. The GLA grammar representation

described in the previous chapter is especially convenient for computing lookahead sets.

Specifically, lookahead computations may all be described as constrained walks of the collection

of NFA’s in the GLA; therefore, it is reasonable to view lookahead as DFA’s that accept the regu-

lar language computed by the lookahead operations, which we store as child-sibling trees. We

introduce LOOKk(p) as the lookahead set for grammar position or GLA state p. Similarly, we

define LOOKk
1(p) as the set of terminals that can be matched k terminals in the future; we term

this the ‘‘linear approximation’’ to LOOKk. LOOKk
1 is advantageous because it has linear time

and space complexity and can be used to reduce the complexity of most lookahead decision

states. We denote decisions that use LOOKk
1-type information C 1(k); these decisions look at

most k terminals into the future and examine only 1-tuples (sets).

In this section, we describe efficient means for representing lookahead information (Section

4.8), define lookahead operations (Section 4.9), and provide a detailed analysis of the worst-case

behavior for computing lookahead (Section 4.10).

50

4.1 Representation

Lookahead information is normally discussed and stored as sets of k-tuples. Unfortunately,

real programs that compute lookahead sequences cannot easily manipulate information in this

form. This section introduces two alternative, equivalent structures for storing, manipulating, and

examining lookahead information: deterministic finite automata (DFA’s) and child-sibling trees.

The DFA representation is appropriate because of its relationship to the GLA representation of a

grammar. We shall view lookahead in this way, but will actually implement lookahead algo-

rithms using child-sibling trees. Here, we show the relationship between lookahead k-tuples, loo-

kahead DFA, and child-sibling trees.

Grammars are efficiently and conveniently represented by GLA because lookahead k-

sequences for a grammar position clearly correspond to the sequence of non-ε edges along the

walks of length k starting from the associated GLA state. Also, DFA’s are more appropriate than

sets of k-tuples for describing lookahead because of the obvious relationship between the regular

lookahead languages and DFA’s.

Consider the lookahead tuple (a,b); it can be trivially represented in DFA form as

a b

A set of lookahead 2-tuples such as {(a,b),(a,c),(a,d)} can then be represented as

a b

c

d

where the common prefix, a, has been factored, thereby reducing space requirements for the loo-

kahead information. We will sometimes use the notation

a b,c,d

as a short form. Note that lookahead DFA’s are acyclic by definition as they accept a language

that is a delineation of k-strings; consequently, all paths are of length k.

When we need to discuss lookahead sets that induce different parser actions, lookahead

DFA accept states will be annotated with an action number; e.g., consider Grammar G4.1, which

is LL (2).

51

B → ad

B → ac

A → Be

A → abc

G4.1

The language described by this grammar is trivially {abc,ace,ade}. The 2-tuple that predicts

A → abc is (a,b) and the set of 2-tuples that predicts A → Be is {(a,c), (a,d)}. In DFA form,

this can be encoded as

1

2

a b

c,d

where the subscript of i implies that that DFA accept-state predicts production i. In general, the

subscript indicates which parser action to induce.

Although it is convenient to view lookahead sets as DFA’s, algorithms to compute looka-

head can more easily manipulate child-sibling trees. When a tree is reasonably simple, we will

use the lisp notation: (ρ α1 α2 ... αn) where ρ is the root of the tree and the αi are the siblings,

which can themselves be trees. However, this notation becomes obtuse as the size of the tree

increases, therefore, trees will generally be depicted graphically. To represent k-tuples in graphi-

cal tree form, one performs the simple transformation in Figure 4.1.

52

#
Create a subtree of the form: (a 1 (a 2 (... (ak −1 ak))))

ak

↓

. . .
↓
a 2

↓
a 1

(a 1 , a 2 , ..., ak)

Create a tree of the form: (a 1 ...) (b 1 ...) ... (c 1 ...)

. . .
↓
a 1 →

. . .
↓
b 1 → . . . →

. . .
↓
c 1

{(a 1 , ...), (b 1 , ...), ..., (c 1 , ...)}

#$$$
$$
$$
$$
$$
$$
$$
$$
$$
$

$$$
$$
$$
$$
$$
$$
$$
$$
$$
$

Figure 4.1 Child-Sibling Tree Representation of k-tuple Set

Using this transformation, the 2-tuple sets above, {(a,b)} and {(a,c), (a,d)}, can be represented

as

b

↓
a

for predicting production one and

c

↓
a →

d

↓
a

for predicting production two where all terminal symbols at the same lookahead depth are at the

same horizontal level. As before with the DFA representation, the common left-prefix in the loo-

kahead information can be factored out:

c

↓
a

→ d

The parallel between the DFA representation and the tree representation can be observed by

rotating and flipping a tree from its normal orientation such as in Figure 4.2. Trees and acyclic

DFA’s are essentially duals of each other, in the graph theory sense, where the tree nodes become

DFA transition labels and vice versa.

53

% %
Rotated Tree Lookahead DFA% %% %
a →

d

↓
b

→

→

e

c a b c

d e

% %&&
&&
&&
&&
&

&&
&&
&&
&&
&

&&
&&
&&
&&
&

Figure 4.2 Tree and DFA Duality Example for {(a,b,c), (a,d,e)}

In the next section, we define lookahead computations and use the child-sibling tree

lookahead-representation to describe these computations as GLA to set and GLA to child-sibling

tree conversions.

4.2 Operations

As discussed in the previous section, we compute lookahead information by traversing

GLA’s. We define LOOKk to be the set of lookahead k-strings for a particular grammar position

(GLA state); i.e. the set of strings that are validly recognizable, according to the parsing method,

from a position by consuming exactly k terminal symbols. — set of terminal symbols that can be

validly recognized, according to the parsing strategy, exactly k terminals in the ‘‘future’’. Conse-

quently, this operation maintains a single set of terminals and has linear time and space complex-

ity (using the correct implementation). LOOKk
1 is called the ‘‘linear approximation’’ as it can be

used to approximate LOOKk with a linear, covering set of k terminal sets. We define LOOKk and

LOOKk
1 in terms of FIRST and FOLLOW operations and in terms of GLA traversals for both

SLL (k)/SLR (k) and LL (k)/LR (k).

4.2.1 Full Lookahead Operations

Parser lookahead information can be defined in terms of FIRSTk and FOLLOWk, which are

insensitive to the parsing method. However, for the various parsing methods, it is convenient to

have one operation that reflects the appropriate sequence of FIRSTk and FOLLOWk operations

necessary to compute lookahead strings for any grammar position. In this section, we define such

an operation for SLL (k)/SLR (k) and LL (k)/LR (k) denoted LOOKk. LOOKk is also defined in

terms of GLA traversals for SLL (k)/SLR (k).

The set of SLL (k)/SLR (k) lookahead strings for a position, A → α ' β is

54

LOOKk(A → α (β) = FIRSTk(β FOLLOWk(A))

and, for LL (k)/LR (k),

LOOKk(A → α (β) = FIRSTk(β γ) where S ⇒lm,rm
* wAγ

with w ∈ T * ,γ ∈ V * for LL (k) and w ∈ V * ,γ ∈ T * for LR (k); LR (k) uses ⇒rm
* and LL (k) uses

⇒lm
* .

The definition of LOOKk(p), for some grammar position p, can be described in terms of

specific walks beginning at the node in the GLA created for position p. Figure 4.3 provides a set

of recurrences that describe LOOKk trees.

55

))
GLA Fragment LOOKk(p) Operation))))
p a *++, ++-

LOOKk −1(p→edge 1)

↓
a

a

k >1

k =1

))
p ε LOOKk(p→edge 1)

))
p a

ε

*+++, +++-
LOOKk −1(p→edge 1) → LOOKk(p →edge 2)

LOOKk −1(p→edge 1)

↓
a → LOOKk(p→edge 2)

k >1

k =1

))
p ε

ε

LOOKk(p→edge 1) → LOOKk(p →edge 2)

))...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

Figure 4.3 SLL (k) LOOKk Operations on GLA

56

where only two edges, p→edge 1 and p→edge 2 , emanate from a GLA node; p→edge 1 is the

edge pointing from left to right and p→edge 2 is the edge pointing downward.

Algorithms for LOOKk are provided in Section 6.16; LOOKk is used by parser construction

algorithms in Chapter 6. Unfortunately, the use of LOOKk is expensive due to the exponential

nature of lookahead information. In an effort to reduce the need for LOOKk operations, we define

a linear, covering approximation called LOOKk
1 that can often be used by in its place.

4.2.2 Linear, Approximate, Lookahead Operations

An attempt is made to resolve parser nondeterminisms with as simple a lookahead decision

as possible. Most decisions can be made with no lookahead or with a single terminal of looka-

head. Of the decisions that require more than one lookahead terminal, it is often the case that ter-

minals at certain depths, rather than terminal sequences, can be used to distinguish between

parser transitions. Storing the lookahead k-tuples for a parser decision state has exponential com-

plexity whereas storing the terminals that can appear at the various depths requires only k sets of

maximum size | T | . We define parsers that make only terminal set (1-tuple) comparisons and

look at most k terminals into the future as C 1(k). The corresponding lookahead computation is

denoted LOOKk
1 .

Denote the set of SLL 1(k)/SLR 1(k) lookahead strings for a position, A → α / β as

LOOKk
1(A → α / β) = FIRSTk

1(β FOLLOWk(A))

and, for LL 1(k)/LR 1(k),

LOOKk
1(A → α / β) = FIRSTk

1(β γ) where S ⇒lm,rm
* wAγ

Again, LR (k) would use ⇒rm
* and LL (k) would use ⇒lm

* .

The normal lookahead operations are modified in the following way:

FIRSTk
1(α) = { a | α ⇒* w and w = xay for x ∈ T k −1 }

and

57

FOLLOWk
1(A) = { FIRSTk

1(β) | S ⇒* αAβ }

where a ∈ T, y ∈ V * , and α, β ∈ V * . FIRSTk
1 is the end-of-file marker, $, when a w of the form

xay cannot be found.

As with LOOKk, LOOKk
1 is easily defined as a collection of GLA traversals. Figure 4.4

gives a set of recurrences that describe LOOKk
1 sets.

58

0 0
GLA Fragment LOOKk

1(p) Operation0 00 0
p a 123 24

LOOKk −1
1 (p→edge 1)

a

k >1

k =1

0 0
p ε LOOKk

1(p→edge 1)

0 0
p a

ε

123 24
LOOKk −1

1 (p→edge 1) ∪ LOOKk
1(p→edge 2)

a ∪ LOOKk
1(p→edge 2)

k >1

k =1

0 0
p ε

ε

LOOKk
1(p→edge 1) ∪ LOOKk

1(p→edge 2)

0 055
55
55
55
55
55
55
55
55
55
55
55
55
5

55
55
55
55
55
55
55
55
55
55
55
55
55
5

55
55
55
55
55
55
55
55
55
55
55
55
55
5

Figure 4.4 SLL 1(k) LOOKk
1 Operations on GLA

59

where only two edges, p→edge 1 and p→edge 2 , emanate from a GLA node; p→edge 1 is the

edge pointing from left to right and p→edge 2 is the edge pointing downward.

The reader may argue that it is more efficient to have LOOKk
1 compute sets at all depths up

to k rather than just for depth k. However, because we expect most decisions to require a single

token of lookahead, computing all sets up to depth k unnecessarily complicates the definition,

algorithm and implementation.

LOOKk
1 is a linear approximation to LOOKk that is often sufficient to induce correct parser

action. Its two advantages are that it reduces grammar analysis to a potentially linear complexity

and parser decision states can be stored in space O (| T | × k) rather than O (| T | k). Parsing with

these compressed lookahead sets is explored in detail in Chapter 5.

The recurrences in Figures 4.4 and 4.3 are simple, but do not take into account the fact that

a lookahead operation may arrive back at a previously-visited node. Cycles are not too much of a

problem unless the results of lookahead computations need to be saved. Storing incomplete

information can be difficult and, therefore, in the next section, we study lookahead computation

cycles, which cause early termination of computations.

4.2.3 Lookahead Computation Cycles

A context-free language cannot be represented exactly with a GLA, but any finite set of sub-

strings of the language generated by a CFG is regular and, hence, can be described by a DFA.

The bounded lookahead information for any position in the grammar is such a language; there-

fore, it is reasonable to represent a grammar as a large, intertwined, collection of NFA’s. Com-

puting lookahead information is then a simple matter of performing a constrained traversal of the

GLA; the computations are similar to NFA REACH and ε-CLOSURE operations. From a graph

theory viewpoint, one is recording all walks of length k beginning at a particular GLA state,

where ε-edges count as length zero. When the lookahead languages of a grammar are represented

by a GLA, FIRSTk and FOLLOWk operations become the same computation except that FIRSTk

begins at nonterminal entry positions and FOLLOWk begins at nonterminal exit positions (recall

that nonterminal exit states point to all states that following references that nonterminal).

Lookahead information is straightforward to compute for many grammars because there are

no GLA cycles. However, If a LOOKk or LOOKk
1 computation were to reach a state that is

currently a member of a walk in progress (for the same k), a cycle would have occurred. We

define a cycle as any lookahead computation recurrence of the form

LOOKn ← f (LOOKn)

60

for some n ≤k and some computation f. An algorithm must not pursue this type of redundant

computation in order to terminate. This section describes the difficulties and semantics behind

cycles in LOOK computations. We begin by describing what computation cycles mean for the

various parsing strategies and then present FIRSTk and FOLLOWk cycle examples.

Cycle detection is important from a computation caching standpoint because early termina-

tion of a lookahead computation due to a cycle yields incomplete information that must not be

cached as complete. Therefore, since our LOOK algorithms will cache results computed for both

nonterminal entry and exit states, we must consider cycles discovered from both state types.

Note that inefficient algorithms that do not save the results of previous computations only need to

worry about cycles causing nontermination of the algorithm.

In the SLL (k)/LL (k) FIRSTk sense, cycles are direct or indirect left-recursion and render the

grammar non-SLL (k)/LL (k). With regards to LR (k), cycles cannot occur as lookahead opera-

tions are confined to string append and FIRSTk operations; SLR (k) analysis runs the same risk as

LL (k) in terms of nontermination, but LR-based parsers do not consider left recursion an error.

4.2.3.1 Example FIRSTk Cycle

Cycles in the FIRSTk sense arise from recursive grammar productions such as those in

Grammar G4.2:

B → b

B → A

A → B

A → aB

G4.2

The GLA for Grammar G4.2 is shown in Figure 4.5.

61

SA S 1

S 2

ε a B ε

ε B ε

SB
ε A ε

S 1

S 2

ε b ε

Figure 4.5 Grammar With FIRSTk Cycle

LOOK2(A → 6 aB) discovers a cycle:

LOOK1(A → 6 B) = LOOK1(B → 6 A) → LOOK1(B → 6 b)
LOOK1(B → 6 A) = LOOK1(A → 6 aB) → LOOK1(A → 6 B)

LOOK2(A → 6 aB) =
LOOK1(B → 6 A)

↓
a

→ LOOK1(B → 6 b)

LOOK1(B → 6 A) requires itself to complete the computation. This cycle indicates that Gram-

mar G4.2 is left recursive. Notice that LOOK2(B → 6 aB) requires LOOK1(B → 6 aB), but

because LOOK2 and LOOK1 are different computations entirely, this does not constitute a cycle.

A computation at depth n can never attempt a computation at depth n +1 because LOOKk is a

monotonically decreasing function of k.

One may view cycles more clearly in a computation dependence graph such as the one dep-

icted for Grammar G4.2 in Figure 4.6.

LOOK2(6 A)

LOOK2(6 B)

LOOK1(6 A)

LOOK1(6 B)

Figure 4.6 Partial Computation Dependence Graph for Grammar G4.2

62

where an edge from computation LOOK1(7 A) to LOOK1(7 B) indicates that LOOK1(7 A)

depends on LOOK1(7 B) to complete its computation and LOOKk(7 A) indicates the combined

LOOKk for all productions of nonterminal A. Therefore, it is always the case that dependence

arcs move vertically, move from left to right, or loop on a state; dependence arcs never point

from right to left.

4.2.3.2 Example FOLLOWk Cycle

Cycles found during any FOLLOWk-type LOOK operation are not a problem from a looka-

head definition point of view because a cycle in this case means simply that that computation

result has already been included in the set of possible k-strings.

LOOK computations may continue past the GLA accept state of a nonterminal, thus, begin-

ning a FOLLOW operation. If a LOOKn operation on some GLA state eventually returns to that

same state and requires a LOOK operation for the same n, LOOKn has detected a cycle; that

branch of the computation must terminate. Grammar G4.3 contains a cycle in the FOLLOW

sense.

C →
C → a 4A

B → a 3C

A → a 2B

A → a 1Ba

G4.3

Computing LOOK1(C → a 3C 7) requires LOOK1(C → a 3C) to complete. LOOK1(C → a 3C)

is a member of a computation cycle and any member of this cycle has the same LOOK1 set; thus,

LOOK1 for any accept state is {a}. This can be easily shown by the transitive property of assign-

ment:

LOOK1(C → a 4A 7) = LOOK1(B → a 3C 7)

LOOK1(A → a 2B 7) = LOOK1(C → a 4A 7)

LOOK1(B → a 3C 7) = LOOK1(A → a 2B 7) → a

By expanding any computation in the cycle, any LOOK1 computation reduces to

LOOK1(p) = LOOK1(p) → a

for some p, which is simply

LOOK1(p) = a

The computation dependencies are partially depicted in Figure 4.7.

63

LOOK1(B → a 3C 8)

LOOK1(A → a 2B 8)

LOOK1(C → a 4A 8)

Figure 4.7 Partial Computation Dependence Graph for Grammar G4.3

Lookahead computations typically request many other computations that, in turn, invoke

others. This is one source of lookahead computation exponentiality with the size of LOOKk loo-

kahead information being the other. The next section explores the worst-case behavior of looka-

head computations as we have defined them in this chapter.

4.3 Complexity of Lookahead Information Computation

The previous methods for C (k) grammar analysis do not explicitly compute lookahead sets;

instead, they test small pieces of the associated canonical parsers with each permutation of T k —

a clearly impractical method. Our techniques have the advantage that they compute lookahead

sets directly, which are needed for parser construction, and they have better average performance,

although they are little better in worst-case complexity. This section describes the worst-case

complexity in time and space of our lookahead computation algorithms; the discussion valid for

algorithms in Chapters 5, 6, and 7.

There are a fixed number of possible lookahead computations possible for a given grammar,

O (| G | × k), because there are k LOOKk and LOOKk
1 operations defined for all | G | positions in

the grammar. However, without results caching, these computations can be computed multiple

times, which renders grammar analysis exponential in nature, O (| G | k), for one computation on

a node. To illustrate this, we present a three-dimensional computation space where each of k

planes has a copy of the grammar in GLA form with the lowest plane associated with k =1; see

Figure 4.8. Computation may proceed within one plane and may dip down into lower planes, but

may never jump up to another level (LOOKk cannot invoke LOOKk +1).

64

......

4

3

2

1

k

Figure 4.8 LOOKk Computation Planes

One computation at the k =1 plane has at most | G | nodes to visit and, hence, has time complex-

ity O (| G |). Each of the | G | nodes in plane k =2 could make a computation in plane k =1, yield-

ing a time complexity for the k =2 plane of O (| G | 2) for one computation. In general at plane k,

there are O (| G | k −1) operations possible at all lower levels and | G | nodes can be visited by

each computation on plane k; One computation at level k is then O (| G | k). A grammar which

exhibits this exponentiality is Grammar G4.7.

A → d

A → cA

A → bA

A → aA

G4.7

The left edge of each production of nonterminal A is visited for each reference to A and for each

k; each invocation of A can ‘‘fork’’ 3 other invocations. Empirical results suggest that the

number of uncached LOOKk
1 computations on A is approximately 3k where the number 3 arises

from the three references to A. For example, LOOK1
1 (A) reports that exactly one LOOK1

1 (A) was

invoked because none of the A references were seen. LOOK2
1 (A) reports that 4 computations

where requested: one for the initial invocation and one for each reference to A in A. Figure 4.9

demonstrates that the number of LOOKk
1 computation requests is, indeed, exponential in the size

of the grammar.

65

5 10

LOOKk
1

operations

(log10 scale)

0

10

100

1000

10000

100000

lookahead depth k

9 9 9 9 9 9 9 9 9 9 9

Figure 4.9 Number of LOOKk
1 Invocations for Grammar G4.7 (no caching)

When the result of every LOOK computation is cached, the number of computations per-

formed is limited to the number of computations defined on the grammar — O (| G | × k). The

time to fill all caches with information is proportional, then, to the number of defined computa-

tions. Let each operation within a node, such as a cache store, takes time proportional to

O (Cinfo), which is the time required to do an operation on the lookahead information. The cache

removes redundant computations; the number of cache lookups is proportional to the number of

nonterminal references times the lookahead depth, or O (| G | × k), in the worst-case.

The space required to compute all LOOK computations is proportional to the maximum

runtime stack-depth of the algorithm and the space required for the cache. The maximum number

of recursive invocations of a LOOK computation is limited to | G | × k because a node/arc may be

visited/traversed at most once per lookahead depth. The cache, on the other hand, can become

large as it is proportional to | G | × k × Cinfo .

Combining this information, we observe that the time to fill the cache and to access it the

maximum number of times is proportional to O (| G | × k × Cinfo + | G | × k) and that the space

required to perform this is O (| G | × k + | G | × k × Cinfo). For the LOOKk
1 computations, which

compute the single set of terminals visible at depth k, Cinfo is proportional to the size of a set,

| T | . For LOOKk, the lookahead is a tree composed to terminals of depth k, which yields a Cinfo

of | T | k.

Summarizing, the worst-case complexity to compute all possible LOOKk
1 operations is

O (| G | × k × | T |) in both time and space. To compute all LOOKk trees, the worst-case time

and space complexity is O (| G | × k × | T | k).

This chapter described lookahead computations, lookahead information representation, and

lookahead computation complexity. Our approach to grammar analysis consists of simple

66

operations on GLA for computing lookahead. In Section 4.9.1, we defined LOOKk(p), the set of

lookahead strings recognizable from GLA state or grammar position p, for the various deter-

ministic parsing strategies. A similar operation, LOOKk
1 , was defined in Section 4.9.2 that

approximates the exponential LOOKk information with compressed lookahead information of

linear size; LOOKk
1 has the advantage that it is linear to compute and yields a much smaller

amount of information. Specifically, LOOKk
1 computes the set of all terminals that can be recog-

nized exactly k terminals in the future. Section 4.8 described how k-tuples are best viewed as

DFA’s due to our representation of grammars as GLA. It further illustrated that child-sibling

trees, which are duals of lookahead DFA’s, are very convenient in practice for manipulating loo-

kahead information.

The worst-case computation of lookahead information was presented as an exponential

function of k due to the size of lookahead information for a fixed grammar. The occurrence of

this worst-case behavior can be reduced, however, through the use of C 1(k) approximations to

the full lookahead information. LOOKk
1 was introduced as the set of terminals that can be recog-

nized k terminals in the future; LOOKk
1 has linear time and space complexity.

The next two chapters (5 and 6) use the observations and information representations

presented in this chapter to construct SLL 1(k) and SLL (k) parsers in their entirety where SLL 1(k)

is an SLL (k) parser which uses only C 1(k) decision templates. They provide algorithms to com-

pute lookahead in the SLL 1(k) and SLL (k) sense and to test for the SLL 1(k) and SLL (k) property;

construction of these parsers is also described. Chapter 7 examines the rest of the LL (k) and

LR (k) hierarchy and generalizes C 1(k) to C m(k) where m is the size of the largest tuple com-

parison.

67

CHAPTER 5 SLL 1(k) — A LINEAR APPROXIMATION TO SLL (k)

The set of SLL (k) lookahead sequences of length k for any grammar position form a finite,

regular language with O (| T | k) sentences in the worst case. By employing the minimum neces-

sary lookahead depth, k, for each decision in an SLL (k) parser, this exponentiality can be reduced

or avoided in many cases. When a decision does require k >1, it is often sufficient to examine the

set of symbols visible at certain lookahead depths rather than complete k-sequences. In this

chapter, we define the SLL 1(k) parser class whose decisions look at most k terminals into the

future and consider set membership tests (1-tuple comparisons) to be the largest atomic operation.

SLL 1(k) is an approximation to SLL (k) that has linear grammar analysis and lookahead informa-

tion size characteristics. Moreover, empirical results indicate that SLL 1(k) covers about 75% of

all SLL (k) decisions for k >1 and 99% of all SLL (k) decisions for k ≥1; see Section 5.11.2.

This chapter describes SLL 1(k) in its entirety, from grammar analysis to parser construc-

tion. Section 5.1 introduces SLL 1(k) by way of an example, provides empirical studies that show

SLL 1(k) to cover a significant fraction of the SLL (k) decisions, and then formalizes the approach.

Section 5.2 examines SLL 1(k) lookahead information and computations in detail. Using this loo-

kahead analysis, Section 5.3 presents an algorithm to test for the SLL 1(k) property. The imple-

mentation of the associated induces relation (parsing decision state) is described in Section 5.4.

5.1 SLL 1(k) Decisions

SLL 1(k) is strictly weaker than SLL (k) for k >1 because it considers k terminal symbols

individually rather than k-sequences; lookahead space requirements are, therefore, O (| T | × k)

rather than O (| T | k). SLL 1(k) lookahead information is comprised of the sets of all terminals

visible at each of k lookahead depths. Specifically, let Λ (an array of sets) represent the linear-

approximate lookahead information for a particular production. Λi is the collection of all termi-

nals visible at depth i starting from that grammar position. If the Λ sets for two productions do

not have at least one disjoint lookahead depth, the two productions are not separable — the deci-

sion is not SLL 1(k) deterministic.

The high compression of Λ sets results in a reduction in recognition strength because most

sequence information is no longer available. With regards to SLL 1(k) decisions, the discriminat-

ing factor between induces actions is not specific terminal sequences, but sets of terminals at

68

certain lookahead depths. As one might expect for a lookahead depth of one, SLL 1(1) and

SLL (1) are equivalent. The following four subsections provide an example SLL 1(k) grammar,

give SLL 1(k) decision statistics, discuss lookahead information compression, and formalize

SLL 1(k) determinism.

5.1.1 Example SLL 1(k) Grammar

In order to illustrate the difference between SLL 1(k) and SLL (k), we present an example,

which is SLL (2), but is also SLL 1(2). It provides some insight as to why SLL 1(2) is effective and

simpler than SLL (k). Consider the recognition of programming language labels presented in the

Grammar G5.1.

S → fwaEtE

S → ilErS

S → waE

S → wS

G5.1

where waE specifies that a word followed by an assignment operator followed by an expression

should be matched; i, f, t, a, l, and r are ‘‘if’’, ‘‘for’’, ‘‘to’’, ‘‘assign’’, ‘‘(’’, and ‘‘)’’ ‘‘respec-

tively. The first two productions of the statement nonterminal symbol, S, can begin with a word,

w. Hence, this grammar is not SLL (1). Lookahead of depth two is required, but 2-tuple com-

parisons are unnecessary. To demonstrate this, we provide the SLL (2) solution and then contrast

it with the SLL 1(2) solution.

Consider the SLL (2) lookahead vectors (τ1 , τ2) plotted for grammar G5.1 in Figure 5.1.

69

τ2

τ1

w

a

i

f

l

w a i f l

1

1

1

2

3

4

Figure 5.1 Lookahead Vector Plot for Grammar G5.1

The vector endpoints in the lookahead vector plot specify the production number that the vector

predicts. The associated SLL (2) decision can be represented by the induces relation shown in

Table 5.1.

Table 5.1 SLL (2) induces Relation for Grammar G5.1

: :
Lookahead (τ1 ,τ2) ∈ T 2 Action: :: :

(w,w) predict S → wS

(w,i) predict S → wS

(w, f) predict S → wS

(w,a) predict S → waE

(i,l) predict S → ilErS

(f ,w) predict S → fwaEtE: :;;;
;;
;;
;;
;;
;

;;;
;;
;;
;;
;;
;

;;;
;;
;;
;;
;;
;

Equivalently, the decision can be represented in heterogeneous state form such as that in

Figure 5.2.

70

upon (τ1 , τ2) ∈ {(w,w),(w,i),(w, f)} predict S → wS;

upon (τ1 , τ2) = (w,a) predict S → waE;

upon τ1 ∈ {i} predict S → ilErS;

upon τ1 ∈ {f} predict S → fwaEtE;

Figure 5.2 Automaton for induces in Table 5.1

By inspection of Figure 5.1, one finds that a series of two set membership tests can be used

to map lookahead vectors to an action in the image. Lookahead depth τ1 uniquely maps (i,l) and

(f ,w) to actions 3 and 4, but cannot separate actions 1 and 2. However, once actions 3 and 4

have been removed from consideration, a second set membership test on τ2 can be used to

separate actions 1 and 2. With this in mind, the SLL (2) induces relation can be represented in a

functionally equivalent, but compressed, manner by the induces relation of Table 5.2.

Table 5.2 SLL 1(2) induces Relation for Grammar G5.1

< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <
Lookahead τ1 , τ2 ∈ T,T Action< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <

{w}, {w,i, f} predict S → wS

{w}, {a} predict S → waE

{i}, {l} predict S → ilErS

{f}, {w} predict S → fwaEtE< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <===
==
==
==

===
==
==
==

===
==
==
==

The induces relation in Table 5.2 is advantageous for two reasons: These k sets are easier

to compute than | T | k tuples and SLL 1(k) decisions can be implemented more practically. For

example, the new relation can be represented in heterogeneous state form as in Figure 5.3.

71

upon τ1 ∈ {w} and τ2 ∈ {w,i,f} predict S → wS;

upon τ1 ∈ {w} and τ2 ∈ {a} predict S → waE;

upon τ1 ∈ {i} predict S → ilErS;

upon τ1 ∈ {f} predict S → fwaEtE;

Figure 5.3 Automaton for induces in Table 5.1

The SLL (2) and SLL 1(2) automaton states appear to be equally complex, but, in general, SLL (k)

induces relations (and resulting parser decision states) will be exponential in size whereas

SLL 1(k) lookahead information is only O (| T | × k).

5.1.2 Empirical Studies of SLL 1(k) Versus SLL (k)

To examine the recognition strength of SLL 1(k) relative to SLL (k), we examined 22 sample

grammar supplied by PCCTS [PDC92] users; see the Appendix for a description of the gram-

mars. Although ANTLR (the parser generator in PCCTS) generates LALL (k) parsers and allows

semantic predicates (semantics may alter the parse), the grammars still provide useful informa-

tion regarding the relationship between compressed and full lookahead.

Table 5.3 provides data collected for 22 sample grammars and breaks down the lookahead

decisions by type (either SLL 1(k) or SLL (k)). There are no SLL (1) decisions because SLL 1(1)

and SLL (1) are identical — they both compute the set of terminals that can be matched next.

Most decisions can be handled by SLL 1(k) for k >1. Also, note that most decisions need only

zero or one terminal of lookahead.

72

Table 5.3 Deterministic Lookahead Requirements By Decision Type for 22 Sample Grammars

� �
lookahead k ≤3� �

SLL1(k): 1 2 3grammar decisions
SLL (0) SLL (k): 1 2 3� �� �

107 2 0S1 311 198 0 1 0� �
52 0 0S2 150 98 0 0 0� �
87 0 0S3 230 141 0 0 0� �

132 3 0S4 336 197 0 1 0� �
118 0 0S5 338 219 0 0 0� �
32 0 0S6 83 50 0 0 0� �
35 0 0S7 93 49 0 0 0� �
29 0 0S8 62 32 0 0 0� �
21 0 0S9 99 77 0 0 0� �
6 0 0S10 11 4 0 0 0� �

13 0 0S11 20 7 0 0 0� �
12 0 0S12 21 9 0 0 0� �
12 0 0S13 26 14 0 0 0� �

105 0 0S14 264 158 0 0 0� �
356 4 1S15 1063 692 0 3 0� �
30 1 0S16 98 64 0 0 0� �
22 0 0S17 63 36 0 0 0� �
89 0 0S18 232 141 0 0 0� �
95 1 0S19 225 129 0 0 0� �

118 0 0S20 214 95 0 0 0� �
82 2 0S21 225 141 0 0 0� �
31 0 0S22 54 23 0 0 0� ����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

73

Table 5.4 summarizes the number of nondeterministic decisions for lookahead depths

greater than one. The number of non-SLL (3) decisions arise from three areas. First, the gram-

mars were taken from users of ANTLR, an LALL (k) parser generator (SLL (k) ⊂ LALL (k)

[SiS82]). Second, some of the grammars used ANTLR’s semantic predicates to resolve syntactic

nondeterminisms with semantic information, which is unavailable to our SLL (k) grammar

analysis tool. Third, a number of nondeterminisms arise normally in real grammars; e.g., the

infamous ‘‘dangling-else’’ construct.

Because SLL 1(k) has linear time and space complexity, it is efficient to make k very large to

see if the extra lookahead will resolve any SLL (k′) decisions for k′<k. The ‘‘SLL (3), non-

SLL 1(10)’’ column illustrates that only a handful of decisions must use full SLL (k) lookahead

information. The ‘‘SLL 1(10), non-SLL (3)’’ column indicates that one of the sample grammars

had three decisions that linear SLL 1(10) could resolve, but SLL (3) could not. Clearly, SLL (10)

could resolve the nondeterminism, but computing O (| T | 10) 10-tuples would take lifetimes to

terminate. Hence, in practice, there is no strict ordering between SLL (k) and its linear approxi-

mation SLL 1(k) because there is a limit to the depth of lookahead available to SLL (k) decisions.

74

Table 5.4 Number Nondeterministic Lookahead Decisions By Type for 22 Sample Grammars

� �
number of decisions� �

SLL (2), SLL (3), SLL1(10),grammar
SLL (3) non-SLL (3) non-SLL1(10) non-SLL1(10) non-SLL (3)� �� �

S1 3 3 4 1 0
S2 0 0 0 0 0
S3 0 2 2 0 0
S4 4 3 4 1 0
S5 0 1 1 0 0
S6 0 1 1 0 0
S7 0 10 10 0 0
S8 0 2 2 0 0
S9 0 1 1 0 0

S10 0 4 4 0 0
S11 0 0 0 0 0
S12 0 0 0 0 0
S13 0 0 0 0 0
S14 0 1 1 0 0
S15 8 7 10 3 0
S16 1 3 0 0 3
S17 0 6 6 0 0
S18 0 2 2 0 0
S19 1 0 0 0 0
S20 0 1 1 0 0
S21 2 0 0 0 0
S22 0 0 0 0 0� ����

��
��
��
��
��
��
��
��
��
��
��
��
�

���
��
��
��
��
��
��
��
��
��
��
��
��
�

���
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��
�

75

To summarize the information concerning decision types, Table 5.5 sums the columns in

Table 5.4.

Table 5.5 Total Number Nondeterministic Lookahead Decisions By Type for 22 Sample Grammars

� �
number of decisions� �

SLL (2), SLL (3), SLL1(10),grammar
SLL (1) SLL (3) non-SLL (3) non-SLL1(10) non-SLL1(10) non-SLL (3)� �� �

Total 1584 19 47 49 5 3� ����
��

���
��

���
�

���
�

���
�

���
�

���
�

���
��

There were 19 decisions requiring SLL (2) and SLL (3) of which 5 could not be handled by

SLL 1(k) for k up to 10; hence, 5/19×100 = 26% decisions required full SLL (k) lookahead infor-

mation or 74% of all sample decisions, which require k >1 lookahead, can be handled by

SLL 1(10). Again, there are even some decisions that SLL 1(k) can handle that SLL (k) cannot due

to exponential computation complexity restrictions on SLL (k). The next section explores in more

the detail the reduction in strength from SLL (k) to SLL 1(k) for the same k.

5.1.3 Recognition Strength Versus Space Requirements

SLL 1(k) is an proper subset of SLL (k) because there are SLL (k) induces that cannot be

mapped correctly with SLL 1(k). The merging of all terminals at lookahead depth i to create the

Λi sets generates artificial lookahead vectors because most terminal sequence information has

been destroyed. O (| T | k) sequences of terminals have been compressed to k sets of terminals,

which comes at the cost of reduced recognition strength. A series of k set membership tests

effectively matches any permutation of terminals formed by the concatenation of a terminal from

Λ1 followed by a terminal from Λ2 and so on. For example, the two lookahead tuples (a,b) and

(c,d) for some action j have sets Λ1
j = {a,c} and Λ2

j = {b,d}. The SLL 1(2) decision strategy,

however, maps any tuple with {a,c} at lookahead depth one and {b,d} at lookahead depth two to

action j — tuples (a,b), (a,d), (c,b), and (c,d). Another way to view this compression is to con-

sider the representative DFA’s such as those depicted in Figure 5.4.

76

> >
SLL (2) Lookahead DFA

Matches (a,b), (c,d)

SLL 1(2) DFA Using Λi
j Sets

Matches (a,b), (a,d), (c,b), (c,d)> >> >
j

j

a b

c d

j

a,c b,d

> >???
??
??
??
??

???
??
??
??
??

???
??
??
??
??

Figure 5.4 DFA’s for Example Lookahead Tuple Space

In terms of lookahead vector plots, Λ set compression projects all k-vectors onto the τi axes.

For example, consider the induces relation of Table 5.6, which results in the lookahead vector

plot shown in Figure 5.5.

Table 5.6 Example SLL (2) induces Relation

> >
Lookahead (τ1 ,τ2) ∈ T 2 Action ∈ {1..4}> >> >

(b,b) 1

(c,e) 1

(d,d) 1

(c,a) 2

(e,c) 2

(a,b) 3

(a,d) 3

(d,c) 4> >??
??
??
??
??
??
??

??
??
??
??
??
??
??

??
??
??
??
??
??
??

77

τ2

τ1

a

b

c

d

e

a b c d e

1

1

1

2

2

3

3

4

Figure 5.5 Example Lookahead Vector Plot

The associated induces relation is SLL (2) because no 2-tuple induces more than a single action

(there are no overlapping vector endpoints in the lookahead plot). The relation is SLL 1(2)

because there exists a τi axis upon which, for each pair of actions, all lookahead vectors for those

pairs may be projected without overlap. Action 3 is projected without overlap onto the τ1 axis,

effectively separating it from the other three actions; similarly, actions 1 and 2 are separable

when projected onto the τ2 axis. An SLL 1(2) induces is therefore consistent and is shown in

Table 5.7. Note that there need not be a single lookahead depth that separates all productions; it

is sufficient to have a depth that separates each pair of productions.

Table 5.7 Example SLL 1(2) induces Relation

@ @
Lookahead τ1 , τ2 ∈ T,T Action ∈ {1..4}@ @@ @

{b,c,d}, {b,d,e} 1

{c,e}, {a,c} 2

{a}, {b,d} 3

{d}, {c} 4@ @AAA
AA
AA
AA

AAA
AA
AA
AA

AAA
AA
AA
AA

An SLL 1(2) parser state is much simpler than a functionally equivalent SLL (2) state would be.

The SLL 1(2) state is shown in Figure 5.6.

78

upon τ1 ∈ {b,c,d} and τ2 ∈ {b,d,e} predict production 1;

upon τ1 ∈ {c,e} and τ2 ∈ {a,c} predict production 2;

upon τ1 ∈ {a} and τ2 ∈ {b,d} predict production 3;

upon τ1 ∈ {d} and τ2 ∈ {c} predict production 4;

Figure 5.6 State for Example induces

A nice way to examine SLL 1(k) decisions is to plot both the real and artificial lookahead

vectors. Figure 5.7 is the same as Figure 5.5 except that the artificial vectors have been added;

‘‘×’’ is an artificial tuple for action 1 and ‘‘o’’ represents an artificial tuple for action 2; there are

no artificial tuples for actions 3 and 4.

τ2

τ1

a

b

c

d

e

a b c d e

1

1

1

×

×

×

×

×

×

2

2o

o

3

3

4

Figure 5.7 Lookahead Vector Plot With Artificial Vectors

None of the real or artificial vectors overlap; hence, the decision is SLL 1(2). A small reduction in

strength is sacrificed for a tremendous reduction in space requirements to perform an induces

relation — from space O (| T | k) to O (| T | × k). Moreover, SLL 1(k) can be used to handled the

majority of SLL (k) decisions. In the next section, we formalize a number of the observations

made up to this point concerning the relative strength of SLL 1(k) and the way in which SLL 1(k)

lookahead can be used to separate alternative productions.

79

5.1.4 SLL 1(k) Formalisms

SLL 1(k) is a very useful language class. It covers most SLL (k) decisions and has linear

complexity in terms of grammar analysis and parser decision state complexity. Further, it can be

used to reduce the complexity of full SLL (k) analysis and decision state complexity. Chapter 7

describes how C 1(k) decisions in general can be used to reduce the complexity of C (k) decisions.

In this section, we define SLL 1(k) decisions formally, show that it is strictly weaker than SLL (k),

and show that SLL 1(k) decisions correctly predict productions.

A parsing decision is SLL (k) separable if there does not exist a k-tuple that induces more

than one parser action (predicts more than one production). We define SLL 1(k) analogously:

Definition: A decision is SLL 1(k) iff there does not exist an artificial (arising from Λ set

compression) or real lookahead tuple that predicts more than one alternative production.

An SLL 1(k) grammar is one for which all decisions are SLL 1(n) for some n ≤k.

Generic SLL 1(k) decision states are of the form shown in Figure 5.8 where m is the number

of productions.

upon τ1 ∈ Λ1
1 and ... and τn 1

∈ Λn1

1 predict production 1

upon τ1 ∈ Λ1
2 and ... and τn 2

∈ Λn2

2 predict production 2

...

upon τ1 ∈ Λ1
m and ... and τnm

∈ Λnm

m predict productionm

Figure 5.8 Generic SLL 1(k) Decision State

where ni is the maximum lookahead depth required for any production pair involving i. Letting

ni = k renders the generic state the most powerful SLL 1(k) state because it uses all k lookahead

depths and compares as most 1-tuples (sets).

The following theorem establishes the relative strength of SLL 1(k).

Theorem 5.1: SLL 1(k) ⊂ SLL (k) for k >1.

Proof:

This is easily shown by example. Consider Grammar G5.2.

80

B → cd

B → ab

A → ad

A → B

G5.2

The SLL 1(2) lookahead information, {LOOK1
1},{LOOK2

1}, for A → B is Λ1 = {a,c},{b,d} and

for Λ2 = A → ad is {a},{d}. Clearly, there is no lookahead depth, n, for which Λn
1 ∩ Λn

2 is

empty. Lookahead ad predicts both productions; a is in the set of terminals that can be matched

at lookahead depth one and d is in the set of terminals that can be matched at lookahead depth

two for both productions. Grammar G5.2 is non-SLL 1(2), but it is SLL (2) by inspection; this

implies that there exists a grammar that is SLL (k), but is not SLL 1(k). Therefore,

SLL 1(k) ⊂ SLL (k).B
Note that SLL 1(1) and SLL (1) are equally strong as both lookahead computations, LOOK1 and

LOOK1
1 , compute the same information — the set of terminals recognizable at lookahead depth

one.

We turn now to the formalisms needed to test decisions for the SLL 1(k) property.

Lemma 5.1: A production pair p,q in an induces relation is SLL 1(k) ⇐⇒ ——
—CC

n ≤k such that

Λn
p ∩ Λn

q = ∅.

Proof:

⇐: It is easily seen that τn ∈ Λn
p induces p and τn ∈ Λn

q induces q if the Λn sets are disjoint. This

test is SLL 1(k) because, at most, a lookahead depth of n ≤k was employed and only 1-tuple (set)

comparisons were done.

⇒: if a production pair is SLL 1(k), it is distinguishable with a lookahead depth of k and with only

set memberships. Hence, the most powerful, compliant, distinguishing expression under the

SLL 1(n) constraints is the following:

upon τ1 ∈ Λ1
p and ... and τn ∈ Λn

p predict production p

upon τ1 ∈ Λ1
q and ... and τn ∈ Λn

q predict production q

Assume the opposite: No Λi sets are disjoint for any i =1..k. But, this would imply that the most

powerful test cannot distinguish between productions, which contradicts our assumption that it is

SLL 1(k). Hence, being SLL 1(k) distinguishable implies that Λ sets for at least one of the

lookahead depths, n ≤k are disjoint.B
Theorem 5.2: An induces relation is SLL 1(k) ⇐⇒ ——

—CC
n ≤k for each production pair p,q such that

Λn
p ∩ Λn

q = ∅. If there is only one production in the induces relation, it is trivially SLL 1(k) for

k =0.

81

Proof:

⇒: if the induces relation is SLL 1(k), then any pair of productions p and q must be mutually

SLL 1(n) separable for some n ≤k. By Lemma 5.1, this implies that Λn
p ∩ Λn

q = ∅.

⇐: If each pair p,q is SLL 1(n) for n ≤k, then all productions are mutually SLL 1(k) separable and,

hence, the induces relation must be SLL 1(k).D
Lemma 5.2: An SLL 1(k) decision uses minimal lookahead depth ⇐⇒ Λi

p ∩ Λi
q ≠ ∅ for i =1..k −1

and for all production pairs p,q.

Proof:

⇒: if an SLL 1(k) decision uses minimal lookahead, then for each production pair p,q there is no

n ≤k for which the decision is SLL 1(n). Hence, Λi
p ∩ Λi

q ≠ ∅ for i =1..k −1.

⇐: If for all production pairs p,q Λi
p ∩ Λi

q ≠ ∅ for i =1..k −1, then all production pairs are

trivially SLL 1(k) by Theorem 5.2.D
Minimal lookahead is generally desirable, but there may be a single lookahead depth farther

out that separates all production pairs in a decision, which reduces the time and space complexity

of a decision state to O (1) and O (| T |), respectively. Sufficient, but not necessary, conditions

for a decision to be SLL 1(k) are given in conditions C1a and C1b.

j =1

∩
j =m

Λn
j = ∅ C1a

and

j =1

∩
j =m

Λi
j ≠ ∅ i = 1..n −1 C1b

for n ≤k and where m is the number of productions. These conditions indicate that, for some loo-

kahead depth n, all Λn sets are disjoint; hence, this n th set alone is sufficient to deterministically

map induces. This situation occurs more often than is initially apparent; all SLL 1(1) decisions

satisfy these conditions. A decision state of this form is shown in Figure 5.9.

82

upon τn ∈ Λn
1 predict production 1

upon τn ∈ Λn
2 predict production 2

...

upon τn ∈ Λn
m predict productionm

Figure 5.9 Optimized SLL 1(k) induces State

Lookahead terminals at depths 1..n −1 are ignored; each action has at least one lookahead tuple

with a terminal appearing at depth i <n that collides with the Λi of another production. Surpris-

ingly, this optimization implies that, occasionally, deeper lookahead yields a faster and smaller

decision; e.g., while (τ1 ,τ2) might separate productions, τ3 alone might also. Also recall that,

normally, only a subset of the edges emanating from a parser state require SLL 1(k) for k >1. The

other edges can be traversed using SLL 1(1). Hence, different decision strategies can be used even

within the same state (if a series of lookahead tests are done rather than a single m-ary branch).

In this section, we defined an SLL 1(k) decision to look at most k terminals into the future

and to use at most 1-tuple (set) comparisons. SLL 1(k) lookahead information is essentially an

approximation to SLL (k). The SLL 1(k) class covers the majority of SLL (k) decisions, has linear

grammar analysis complexity, and results in decision states with linear space requirements; full

SLL (k) has exponential analysis and space requirements. Although SLL 1(k) is theoretically

weaker than SLL (k), it can look farther ahead due to its linearity, which may in practice make it

as strong or stronger in some instances.

We presented statistics to support our claim that SLL 1(k) is a useful class of decisions and

provided theorems and lemmas that formalize its recognition strength and lead to decision imple-

mentation templates. In the next section, we present algorithms that compute LOOKk
1 lookahead

information.

5.2 SLL 1(k) Lookahead Computation

Because SLL 1(k) grammars are represented as GLA, lookahead computations can be

defined as a collection of simple recurrences. The recurrences specify a walk of the GLA, start-

ing at some state, along which the non-ε edge-labels at distance k are collected into a set called

LOOKk
1 . This section presents an example SLL 1(k) lookahead computation and provides an algo-

rithm to implement LOOKk
1 following the recurrences given in Section 4.9.1.

83

5.2.1 Example Lookahead Computation

Before giving algorithms for computing lookahead information, we illustrate how SLL 1(k)

LOOKk
1 will behave by constructing lookahead sets for nonterminal A in Grammar G5.3.

C → Bc

B → d

B → a

A → ab

A → Be

G5.3

Figure 5.10 shows the GLA that would be created from the grammar.

A p SA

q

ε B e ε

ε a b ε

B ε a ε
SA

SC

ε d ε

C SC
ε B c ε

Figure 5.10 Example GLA for LOOK Computations

To determine the set of terminal symbols that can possibly occur k terminals in the

‘‘future’’, one simply walks the GLA to find all non-ε-edge labels that appear after having

‘‘walked over’’ k −1 edges (ε-edges are traversed in search of other edge types, but are not

included in sets or counted as actual terminals); in other words, perform a bounded depth-first

search of the GLA. As lower cost decisions are attempted before those with higher cost, k =1 is

attempted first. LOOK1
1 (A → E Be) enters the GLA at node A and traverses the ε-edge to node B

whereupon it sees edges a and b at depth one. Hence, LOOK1
1 (A → E Be) is {a,b}. Similarly,

LOOK1
1 (A → E ab) enters the GLA at A and immediately discovers an edge labeled a at depth

one; the lookahead for production two of nonterminal A is therefore {a}. The induces relation

for A is tabulated in Table 5.8.

84

Table 5.8 SLL 1(1) Relation induces for Grammar G5.3

F F
Lookahead τ1 ∈ T ActionF FF F

{a,b} predict A → Be

{a} predict A → abF FGGG
GG
G

GGG
GG
G

GGG
GG
G

Because a induces two actions, A is not SLL 1(1) (or SLL (1)) and SLL 1(2) must be attempted.

LOOK2
1 (A → H Be) enters the GLA at node A, moves past the depth one edges following node B

and traverses the ε-paths to nodes SA and SC looking for LOOK1
1 (A → B H e) and

LOOK1
1 (C → B H c). From SA , e is found at relative depth one; from SC , c is visible at relative

depth one. LOOK2
1 (A → H ab) moves past the a edge following node A to find b at depth two

(relative to A). The induces relation then becomes deterministic; it is shown in Table 5.9.

Table 5.9 SLL 1(2) induces Relation for Grammar G5.3 at k =2

F F
Lookahead τ2 ∈ T ActionF FF F

{c,e} predict A → Be

{b} predict A → abF FGGG
GG
G

GGG
GG
G

GGG
GG
G

Table 5.9 gives the minimal information required to induce correct parser action from node A. In

this way, the phase of a parser generator that generates output parser states does not have to be

incredibly clever about how it implements induces; the mapping will be optimized heavily by the

grammar analysis phase (the number of tuples to map can be made minimal, in general). The

associated heterogeneous automaton state is given in Figure 5.11.

upon τ2 ∈ {c, e} goto p;

upon τ2 = {b} goto q

A:

Figure 5.11 Heterogeneous Automaton for Node A of Grammar G5.3

85

This mapping is surprising as it predicts an SLL (2) decision by examining only one lookahead

terminal (albeit, the terminal at depth two) — the decision is SLL 1(2).

The example computation in this section illustrates that computing LOOKk
1 is not terribly

difficult. The next section provides algorithms that perform the same bounded depth-first-search

on the GLA to compute SLL 1(k) lookahead sets.

5.2.2 Algorithms to Compute SLL 1(k) Lookahead

The definitions of FIRSTk
1 and FOLLOWk

1 are useful as canonical operations, but LOOKk
1 is

computed when building a parser. This section presents two algorithms to compute LOOKk
1 in

the SLL 1(k) sense. The first has an exponential complexity, but is straightforward; the second is

efficient, but is more complicated. Both algorithms implement the set of SLL 1(k) recurrences as

described in Chapter 4.

Given a position in a grammar, SLL 1(k) LOOKk
1 returns the set of terminals that could be

matched, while deriving any valid sentence, at a lookahead depth of k. This algorithm operates

on GLA constructed as per Section 3.5; it performs what amounts to modified REACH and ε-

CLOSURE operations to find the set of terminals reachable from a given state. Figure 5.12

implements exactly, in pseudo-code, the recurrences in Figure 4.3.

function LOOKk
1(p : Node) returns set of terminal;

begin
var rv : set of terminal;

if p=nil or k=0 then return ∅;
if p.busy [k] then return ∅;
p.busy [k] = true;
if (p.edge 1 is-a-terminal) begin

if (k >1) then rv = LOOKk −1
1 (p.edge 1);

else rv = p.label 1;
end;
else rv = LOOKk

1(p.edge 1);
rv = rv ∪ LOOKk

1(p.edge 2);
p.busy [k] = false;
return rv;

end LOOKk
1;

Figure 5.12 Inefficient Strong LOOKk
1 Algorithm on GLA

This algorithm is simple for the following reasons:

86

I The GLA structure used to represent grammars encodes much of the usual procedure used

to compute lookahead information. For instance, the FOLLOW-links that emanate from

each nonterminal GLA accept state encode the fact that the FOLLOW of a nonterminal must

be included when any production generates fewer than k terminals.I The algorithm computes LOOKk
1 in the SLL (k) sense; i.e. context-insensitive FOLLOW

sets may be used whereas in LL (k) they cannot; see Chapter 7.I Results are not saved for use by future computations.I At most two arcs emanate from any GLA state including nonterminal entry and exit states.I Computations maintain and return sets of terminals not sets of k-tuples.

This version of LOOKk
1 is naive because it does not save results so that future computations

do not repeat the work. Because LOOKk
1 is an independent function for each k, an obvious

improvement is to provide a set of k caches for each entry and exit node associated with a nonter-

minal. In this way, no computation would be performed more than once, which is quite common

during grammar analysis. If no computation cycles were possible, caching would be an

extremely simple addition to the LOOKk
1 algorithm in Figure 5.12 because computations could

not terminate early resulting in incomplete information. Unfortunately, cycles are common and

an operation that is incomplete cannot be cached in an obvious way. It would appear that partial

results must be cached and that the results must be completed after the cycle completes. In other

words, after each LOOKk
1 operation completed, it would correct all cache entries that were

incomplete by inserting the necessary terminal set. This mechanism would work, but a simpler,

more elegant solution exists.

Recall from Section 4.9.3 that all LOOK computations in a cycle result in the same looka-

head information. Therefore, computations that must terminate early due to cycle detection can

return the partial results of that computation branch and then cache the ‘‘result’’ that that LOOK

branch is a member of a cycle. Later, when the same LOOK computation is requested, its cache

entry will point to the computation result for the entire cycle. If the cycle result has not be com-

pleted, the cache simply returns a reference to the computation that will eventually be finished.

Cache entries consist of a set of terminals and a completion flag, where the completion flag

is true if the cache entry may be used directly; a completion flag of false implies that the entry is

a reference to the cache entry of another nonterminal which is the head of a cycle. A cache entry

exists for entry and exit state of each nonterminal and for each lookahead depth. The LOOKk
1

computation cache is, therefore, of size O (| T | × k × | N |).

Let us re-examine the grammar from Section 4.9.3 as an example of LOOK1
1 cyclic compu-

tation caching

87

C →
C → a 4A

B → a 3C

A → a 2B

A → a 1Ba

Consider the following computation sequence:

LOOK1
1 (C → a 4A J) = LOOK1

1 (B → a 3C J)

LOOK1
1 (A → a 2B J) = LOOK1

1 (C → a 4A J)

LOOK1
1 (B → a 3C J) = LOOK1

1 (A → a 2B J) ∪ a

LOOK1
1 (B → a 3C J) eventually causes the invocation of LOOK1

1 (C → a 4A J) which cannot

complete due to its need for LOOK1
1 (B → a 3C J). Therefore, the cache entry for

LOOK1
1 (C → a 4A J) is {imag (B,FOLLOW)} and labeled as incomplete where

imag (B,FOLLOW) is an imaginary terminal representing a cycle to nonterminal A in the FOL-

LOW sense; in practice, only the nonterminal is recorded because when requested again, the

requesting function invocation knows which sense of cycle occurred (the cache is connected to a

GLA entry or exit node). The computation specifies, via a return parameter, that a cycle to C

occurred. LOOK1
1 (A → a 2B J) invokes a computation which results in a cycle; hence,

LOOK1
1 (A → a 2B J) is a member of that cycle and also has an incomplete cache entry of

{imag (B,FOLLOW)}. Similarly, LOOK1
1 (B → a 3C J) realizes that it is a member of cycle, but a

cycle to itself. The computation can do no more work and considers itself complete. The cache

entry for LOOK1
1 (B → a 3C J) is {a} and is complete. Future requests for any of the incomplete

computations would examine the entry for LOOK1
1 (B → a 3C J), find it complete, complete its

own computation from that information, and finally return a copy of its now complete cache

entry. Cycles can theoretically occur from traversals of both edges emanating from an GLA state.

In this case, the computation is a member of two cycles, which effectively yields a bigger cycle.

The cache may refer to either cycle arbitrarily without effecting the result of the computation.

Figures 5.13, 5.14, and 5.14 comprise an efficient algorithm to compute LOOKk
1 using the

caching mechanism just described.

88

function LOOKk
1(p : Node, var cycle : nonterminal) returns set of terminal;

begin
var rv : set of terminal;
var cycle 1 , cycle 2 : nonterminal;

cycle 1 = not-a-cycle;
cycle 2 = not-a-cycle;
if (p is-node-with-cache and p.cache [k] not-empty) then return retrieve-from-cache(p, cycle);
if p.busy [k] then begin

cycle = p.rule;
return ∅;

end;
p.busy [k] = true;
if (p.edge 1 is-a-terminal) then begin

if (k >1) then rv = LOOKk −1
1 (p.edge 1 , cycle 1);

else rv = p.label 1;
if (cycle 1 is-cycle-to-current-node) then cycle 1 = not-a-cycle;

end;
else begin

rv = LOOKk
1(p.edge 1 , cycle 1);

if (cycle 1 is-cycle-to-current-node) then cycle 1 = not-a-cycle;
end
rv = rv ∪ LOOKk

1(p.edge 2 , cycle 2);
if (cycle 2 is-cycle-to-current-node) then cycle 2 = not-a-cycle;
p.busy [k] = false;
if (p is-node-with-cache) then store-into-cache(rv, p, cycle 1 , cycle 2);
return rv;

end LOOKk
1;

Figure 5.13 Efficient Strong LOOKk
1 Algorithm on GLA

89

function retrieve-from-cache(p : Node, var cycle : nonterminal) returns set of terminal;
begin

var nt : nonterminal;
var node : Node;

if (p.cache [k] is-complete) then return p.cache [k];
else begin

nt = imaginary-terminal-to-nonterminal(only-element-of(p.cache [k]));
if (p is-entry-node) then node = entry-node-of(nt);
else node = exit-node-of(nt);
if (node.cache [k] is-complete) then return set-dup(node.cache [k]);
else begin

cycle = nt;
return ∅;

end;
end;

end retrieve-from-cache;

Figure 5.14 Cache Retrieval for Efficient Strong LOOKk
1

90

procedure store-into-cache(rv : set of terminal,
p : Node,
cycle 1 : nonterminal,
cycle 2 : nonterminal);

begin
var c : nonterminal;

/* cache this set for use by other functions if complete */
if (cycle 1 , cycle 2 are-not-cycles) then begin

p.cache [k] = set-dup(rv);
indicate-complete(p.cache [k]);
return;

end

if (cycle 1 is-cycle or cycle 2 is-cycle) then
begin

if (cycle1 is-cycle) then c = cycle 1;
else c = cycle 2;
p.cache [k] = set-of(nonterminal-to-imaginary-terminal(c));
indicate-incomplete(p.cache [k]);

end
end store-into-cache;

Figure 5.15 Cache Storage for Efficient Strong LOOKk
1

91

Once lookahead information has been computed, testing for the SLL 1(k) property is a sim-

ple matter of applying the theorems and lemmas in Section 5.11.4.

5.3 Testing for the SLL 1(k) Property

This section provides an algorithm to test a grammar for SLL 1(k) determinism. The advan-

tage of this algorithm is that is has linear time complexity and SLL 1(k) is close to SLL (k) in

strength. Figure 5.16 presents a procedure which must be applied to each nonterminal in N.

92

procedure testSLL 1(rule : nonterminal, max_k : integer);
begin

k = 1;
p = first-production-of rule;
while p ≠ nil do begin

f 1 = LOOKk
1(p.edge 1);

q = p.edge 2;
while q ≠ nil do begin

f 2 = LOOKk
1(q.edge 1);

while f 1 ∩ f 2 ≠ ∅ do begin
if k=max_k then report-nondeterminism;
else begin

k = k +1;
f 1 = LOOKk

1(p.edge 1);
f 2 = LOOKk

1(q.edge 1);
end;

end;
q = q.edge 2;

end;
p = p.edge 2;

end;
end testSLL 1;

Figure 5.16 Algorithm on GLA to Test SLL 1(k) Determinism

93

The outer two loops iterate through all

KL
M 2
m N L

O =
2

m × (m −1)P P P P P P P P P P

unique production pairs where m is the number of productions for some nonterminal; production

pair separability over all production pairs in a decision implies that the entire decision is deter-

ministic. As per section 5.11.4, to guarantee production pair separability, it is sufficient to find a

single lookahead depth n ≤k that has no terminals in common. Therefore, only Λn sets are exam-

ined for each lookahead depth n rather and all 1..n at each iteration. The innermost loop is per-

formed until either a lookahead depth is found that separates the current production pair or the

maximum allowable lookahead depth, k, is reached. If the maximum lookahead depth is reached

without resolving the production pair prediction problem, the decision is not SLL 1(k) due, at

least, to this production pair.

To define the complexity of this algorithm, we separate the cost of computing lookahead

information from the cost of iterating over all productions and all nonterminals. As always, we

will assume the worst-case scenario. Ignoring lookahead computation costs, for a single nonter-

minal, testSLL 1 requires space proportional to | T | , the size of a set of nonterminals, and time

proportional to

O (

KL
M | N |

| P |P P P P P N L
O 2

× k)

where | P | / | N | is the average number of productions per nonterminal (this is a constant less

than eight normally in practice). The space required to test all nonterminals is dominated by the

space required to compute all LOOKk
1 sets — O (| G | × k × | T |). Multiplying for each nonter-

minal and adding in the time for LOOKk
1 computations established earlier,

O (| G | × k × | T | +
| N |
| P | 2P P P P P P × k)

or, roughly O (| G | × k × | T |), is required to test all nonterminals for the SLL 1(k) property.

SLL 1(k) testing is therefore a linear function of k for a fixed grammar.

Once all parser decision states have been tested for the SLL 1(k) property, parser construc-

tion may begin. The next section describes a simple and effective decision state construction

mechanism.

94

5.4 SLL 1(k) Parser Construction

The construction of SLL (1)-based parsers is well understood and sufficiently covered in the

literature. In contrast, only theoretical methods exists for lookahead depths greater than one.

These techniques are generally simple extensions to those used for SLL (1). To construct practi-

cal parsers, we describe parsers as heterogeneous automata; each decision state can use a different

lookahead expression. Heterogeneous automata can be implemented either as a group of

independent states that control the parse (without an interpreter) or as a set of mutually recursive

functions or procedures. We choose recursive-descent as the best choice for the implementation

of all LL-based parsers because of the great flexibility it affords. Although the lookahead deci-

sions themselves are the focus, complete parsers for nonterminals of interest will be constructed.

Once a recursive-descent parser has entered a function matching some nonterminal, a pred-

iction expression, or series of expressions, must indicate which code to execute; i.e. which pro-

duction to apply. This section suggests one of the possible prediction expression mechanisms —

a series of tests, one for each production to predict. This method is the slowest in terms of pars-

ing speed, but is easiest to implement, has the smallest space requirements, and has an acceptably

fast average execution time; it has been used in ANTLR [PDC92] to construct LALL (k) parsers.

In general, SLL 1(k) nonterminal parsing decisions will be of the form shown in Figure 5.17.

procedure A;
begin

if τ1 ∈ Λ1
1 and τ2 ∈ Λ2

1 and ... and τn ∈ Λn
1 then begin

match production 1;
end;
elseif τ1 ∈ Λ1

2 and τ2 ∈ Λ2
2 and ... and τn’ ∈ Λn’

2 then begin
match production 2;

end;
...
elseif τ1 ∈ Λ1

m and τ2 ∈ Λ2
m and ... and τn’’ ∈ Λn’’

m then begin
match production m;

end;
end A;

Figure 5.17 SLL 1(k) Nonterminal Decision Template

Terminal references are implemented as MATCH(a), a simple macro, which ensures that the

current lookahead symbol matches a and consumes a terminal. Nonterminal references are

merely calls to the appropriate procedure. The lookahead depth, even within one decision, can

vary according to the structure of the productions within that grammar decision point; this saves

both analysis and parser time and space. From a user-semantics point of view, downward-

95

inheritance and upward-inheritance are trivially implemented as arguments and return values

respectively (recursive-descent parsers have excellent semantic flexibility).

Consider the recognition of Grammar 5.6, which is SLL 1(3).

D → ut

D → st

C → ef

C → bg

B → eg

B → bc

A → af

A → D

A → Cc

A → Ba

G5.6

Although nonterminal A is SLL 1(3), nonterminals B, C, and D are SLL 1(1) and, hence, their

implementations would be much smaller. The induces relation of A is shown in Table 5.10.

Table 5.10 Example SLL 1(3) induces Relation

Q Q
Lookahead τ1 , τ2, τ3 ∈ T,T,T ActionQ QQ Q

Λ1
1 , Λ2

1 , Λ3
1 = {b,e}, {c,g}, {a} predict A → Ba

Λ1
2 , Λ2

2 , Λ3
2 = {b,e}, {g, f}, {c} predict A → C

Λ1
3 , Λ2

3 , Λ3
3 = {s,u}, {t}, {$} predict A → D

Λ1
4 , Λ2

4 , Λ3
4 = {a}, {f}, {$} predict A → afQ QRRR

RR
RR
RR

RRR
RR
RR
RR

RRR
RR
RR
RR

A can be implemented by the procedure in Figure 5.18.

96

procedure A;
begin

if τ1 ∈ {b,e} and τ2 ∈ {c,g} and τ3 = a then begin
B;
MATCH(a);

end;
elseif τ1 ∈ {b,e} and τ2 ∈ {g, f} and τ3 = c then begin

C;
MATCH(c);

end;
elseif τ1 ∈ {s,u} and τ2 = t and τ3 = $ then begin

D;
end;
elseif τ1 = a and τ2 = f and τ3 = $ then begin

MATCH(a);
MATCH(f);

end;
end A;

Figure 5.18 SLL 1(3) Implementation of A

Many local optimizations can be made. For example, only the first two productions require more

than a single terminal of lookahead and lookahead depth two, τ2 , is not needed to predict any pro-

duction. Therefore, the prediction expressions can be reduced to that of Figure 5.19.

97

procedure A;
begin

if τ1 ∈ {b,e} and τ3 = a then begin
B;
MATCH(a);

end;
elseif τ1 ∈ {b,e} and τ3 = c then begin

C;
MATCH(c);

end;
elseif τ1 ∈ {s,u} then begin

D;
end;
elseif τ1 = a then begin

MATCH(a);
MATCH(f);

end;
end A;

Figure 5.19 Optimization of A’s Implementation

The τ1 terms remain because they distinguish the first two productions from the other two pro-

ductions. Any lookahead depth used to separate any production pair must be included in their

production prediction expression.

The set membership test used in the above examples can be implemented in space

O (| T | /wordsize) and in time O (1) where wordsize is the width in bits of a machine word. Each

unique terminal set is expressed by a particular bit position within an array, setwd, indexed by the

terminal. For example, ‘‘setwd [τ1] & 1’’ tests τ1 for membership in the set numbered 1, where

‘‘&’’ is the bitwise ‘‘and’’ operator. If the bit is one, τ1 is a member of that set. setwd is a table

as in Table 5.11.

Table 5.11 Sample Bit Set Implementation — setwd Array

S S
setwd index bitsS SS S

a 0 0 0 1

b 0 0 1 0

c 0 0 0 1

d 0 0 1 0

e 0 0 1 0S STTT
TT
TT
TT
T

TTT
TT
TT
TT
T

TTT
TT
TT
TT
T

98

which indicates that a and c are members of the first set (bit position 0; set membership testing is

a bitwise ‘‘and’’ing with 1) and b, d and e are members of the second set (hence we mask with 2.

This type of membership operation is O (1), which results in much better execution speed than the

equivalent operation on a list representation of a set (which must be searched).

The induces relation is computed implicitly by the SLL 1(k) determinism algorithm.

Specifically, the results of each LOOKk
1 , computed during the course of the algorithm, are stored

in p.look 1[k] where p is the node for which the LOOKk
1 was requested and p.look 1 is a results

buffer in node p. A parser generation pass then trivially walks the GLA for the grammar generat-

ing code according to the templates discussed above. Because the SLL 1(k) determinism algo-

rithm computes only as much lookahead as necessary, the resulting parsers use the least possible

amount of lookahead; p.look 1[i] will be nonempty for all i =1..n where n ≤k is the minimum loo-

kahead needed to predict that production.

In this chapter we defined a linear approximation to SLL (k) called SLL 1(k). We also pro-

vided empirical data that suggests SLL 1(k) handles most SLL (k) decisions and presented algo-

rithms for computing the SLL 1(k) lookahead operator (LOOKk
1) and for testing for the SLL 1(k)

condition. Computing all possible SLL 1(k) LOOKk
1 operations can be done in time and space

O (| G | × k × | T |); because SLL 1(k) testing is dominated by the cost of computing lookahead

information and is, therefore, O (| G | × k | T |). A method for constructing SLL 1(k) parsers was

also developed; specifically, a recursive-descent procedure was used for each CFG nonterminal

that employed a series of up to k set memberships for each of m alternative productions.

SLL 1(k) has linear grammar analysis and lookahead information characteristics, but is

strictly weaker than SLL (k). Unfortunately, SLL (k) has exponentially large lookahead informa-

tion. In the next chapter, we develop SLL (k) parsers fully and demonstrate how SLL 1(k) gram-

mar analysis and decision state construction methods can be used in conjunction with SLL (k)

methods to reduce SLL (k) to near-linear performance.

99

CHAPTER 6 SLL (k)

SLL (k) parsing decisions have lookahead languages that are of size O (| T | k) in the worst

case. Chapter 5 defined an approximation to SLL (k), denoted SLL 1(k), that reduced the language

size to O (| T | × k) and handled the majority of SLL (k) decisions. Practical SLL (k) parsers, are

built by employing the minimum amount of lookahead and by using SLL 1(k) decisions when

possible. For the few non-SLL 1(k) decisions, a hybrid SLL 1(k)/SLL (k) decision is constructed

that typically has near-linear space requirements as is demonstrated in Section 6.18.

This chapter describes how practical SLL (k) parsers may be constructed. The first section

presents an example that illustrates the difference between SLL 1(k) and SLL (k) decisions. The

second and third sections describe SLL (k) grammar analysis, which includes lookahead informa-

tion computation and testing for the SLL (k) property. The final section describes how SLL (k)

grammar analysis, when combined with SLL 1(k) analysis, can be used to build practical SLL (k)

parsers.

6.1 Example SLL (k) Grammar

The difference between SLL 1(k) and SLL (k) can best be described by way of an example.

Consider Grammar G6.1, which recognizes a few simple C Language declarations. It is SLL (3),

but not SLL 1(3).

F → b function_body e

S → b struct_body e

E → w

E → wlr

T → st

T → i

D → swS

D → TEF

G6.1

where l and r are left and right parenthesis; b and e are beginning and ending curly braces ‘‘{, }’’.

Nonterminal D abstracts a declaration, T is a type, E is a declarator expression, S is a structure

body, and F is a function body. Terminal s represents struct, w is a word, i is int, and t is a

type name. D will match sentences such as

100

s w b struct_body e
s t w
i w b function_body e

which, represented in C, would be

struct word { struct_body }
struct structname word
int word { function_body }

The associated SLL (3) induces relation for nonterminal D is given in Table 6.1.

Table 6.1 SLL (3) induces Relation for Nonterminal D in Grammar G6.1

U U
Lookahead (τ1 ,τ2 ,τ3) ∈ T 3 ActionU UU U

(i,w,l) predict D → TEF

(i,w,b) predict D → TEF

(s,t,w) predict D → TEF

(s,w,b) predict D → swSU UVVV
VV
VV
VV

VVV
VV
VV
VV

VVV
VV
VV
VV

The results of SLL 1(3) analysis, on the other hand, yields the induces relation in Table 6.2.

Table 6.2 SLL 1(3) induces Relation for Nonterminal D in Grammar G6.1

U U
Lookahead τ1, τ2 ,τ3 ∈ T,T,T ActionU UU U

{i,s},{w,t},{l,b,w} predict D → TEF

{s},{w},{b} predict D → swSU UVVV
VV
V

VVV
VV
V

VVV
VV
V

Clearly, there is no lookahead depth, n, such that the Λn
1 and Λn

2 are disjoint; hence, the

decision is not SLL 1(3). One is not left with the prospect of testing O (| T | k) k-tuples, however.

Combining SLL 1(k) with a few k-tuple comparisons can be more efficient than the straightfor-

ward approach of huge tables, gigantic DFA’s or long sequences of k-tuple comparisons. Section

6.18 discusses this at length, but we present two sample SLL (k) decision states to illustrate the

mechanism; see Figures 6.1 and 6.2.

101

upon (τ1 , τ2 , τ3) ∈ {(i,w,l), (i,w,b), (s,t,w)} predict D → TEF;

upon (τ1 , τ2 , τ3) = (s,w,b) predict D → swS;

Figure 6.1 Conventional State for Nonterminal D in Grammar G6.1

The conventional state, which performs k-tuple comparisons, is straightforward, but can quickly

become exponential. Even though SLL 1(3) is insufficient for this decision, it is mostly sufficient;

the only problem with an SLL 1(k) decision here is that an artificial 3-tuple of D → TEF, (s,w,b),

is a real tuple predicting D → swS. If one were to use the SLL 1(k) decision template and then

tested for this one ‘‘irregularity’’, a correct prediction expression would result. Figure 6.2 illus-

trates this hybrid approach.

upon τ1 ∈ {i,s} and τ2 ∈ {w,t} and τ3 ∈ {l,b,w} and (τ1 , τ2 , τ3) ≠ (s,w,b) predict D → TEF;

upon τ1 = s and τ2 = w and τ3 = b predict D → swS;

Figure 6.2 Hybrid State for Nonterminal D in Grammar G6.1

As a further reduction, consider an implementation of heterogeneous parser states that tests the

‘‘upon’’ expressions sequentially in the order specified rather than doing an m-ary branch. In this

case, if the second prediction expression appeared first, then the extra tuple comparison on the

D → TEF predictor is unnecessary. Even though both prediction expressions would match

(s,w,b), the first production would be predicted by default, thus, rendering a valid parse.

Because this example is so small, the hybrid SLL 1(k)/SLL (k) state does not appear to be

much of a win, but for real examples, k set comparisons plus a few k-tuple comparisons is much

better than | T | k tuple comparisons or trying to store that many tuples into a hash table.

102

6.2 SLL (k) Lookahead Computation

SLL 1(k) analysis returned a set of terminals at depth k away from the initial GLA state.

This information is used by SLL 1(k) to make extremely efficient decisions. However, when this

type of decision results in a nondeterministic parser state, an SLL (k) decision must be attempted;

i.e. LOOKk information must be computed.

The GLA representation of a grammar is designed to allow lookahead computations to be

described as simple recurrences such as those of Section 4.9.1. The SLL (k) lookahead language

for a grammar position p, LOOKk(p), is the collection of non-ε-edges along the walks of length k

emanating from the GLA state associated with position p. The lookahead information is formed

into child-sibling trees, which are much easier to manipulate than DFA’s (an equally valid looka-

head information representation).

While lookahead computations are easy to define on a GLA, the time and space complexity

of an actual computation may be extremely high. There are two sources of nonlinearity in gram-

mar analysis. One source arises from the recursive nature of grammars (see Section 4.9.3 on

computation cycles) and another from the exponential size of the lookahead information. This

section provides three algorithms that implement the lookahead recurrences of Section 4.9.1: a

straightforward algorithm, an algorithm that uses the results of SLL 1(k) analysis to prune the

number of walks, and finally an algorithm that caches all results for use by later computations.

We begin by illustrating the straightforward computation of lookahead via an example.

6.2.1 Example Lookahead Computation

To illustrate the computation of LOOKk and the use of trees to compute lookahead informa-

tion, consider Grammar G6.2.

C → Bc

B → d

B → a

A → ab

A → Be

G6.2

Figure 5.10 shows the GLA that would be created.

103

SA S 1

p

ε B e ε

ε a b ε

SB
ε a ε

S 1

S 2

ε d ε

SC S 2
ε B c ε

Figure 6.3 Example GLA for LOOK Computations

Whereas LOOKk
1 walks an GLA collecting non-ε edge labels into a set, LOOKk records the

paths as well as the non-ε edge-labels. LOOK2(A → W Be) jumps the ε-edge to state B where it

sees two alternatives. Arbitrarily choosing to traverse edge a, LOOK2 finds its first usable piece

of information and creates a tree node. Because a terminal edge has been traversed, the looka-

head depth has been reduced by one. Therefore, LOOK1 is attempted for the state pointed to by

the a edge in production one of B. LOOK1 traverses both ‘‘FOLLOW’’ links, finding edges e in

nonterminal A and c in nonterminal C. Because these can be viewed as an alternative set of ter-

minals, the tree nodes are connected as siblings e → c. To combine the LOOK1 tree with the

previous work, done by LOOK2 , the a tree node becomes the parent of e and c:

e

↓
a

→ c

LOOK2 is not finished yet as it must walk the second alternative of B. LOOK1 is applied to the

node pointed to by the d edge in B, which returns e → c. Edge d precedes the LOOK1 operation

and hence, the lookahead tree for the second production of B is:

e

↓
d

→ c

The two subtrees with a and d as roots are alternatives in relation to each other and become

siblings in a new, larger tree, which is returned as the lookahead tree for B:

e

↓
a

→

—

c

— →

e

↓
d

→ c

104

Computing LOOK2(A → X ab) is straightforwardly:

b

↓
a

6.2.2 Straightforward LOOKk Algorithm

The recurrences of Section 4.9.1 can be implemented in a fairly straightforward, but

inefficient, manner. Figure 6.4 provides such an algorithm to compute LOOKk.

function LOOKk(p : Node) returns tree of terminal;
begin

var t,u : tree of terminal;

if p=nil or k=0 then return nil;
if p.busy [k] then return nil;
p.busy [k] = true;
if (p.edge 1 is-a-terminal)

t =

LOOKk −1(p.edge 1)

↓
p.label 1

; /* create tree with label as root */

else
t = LOOKk(p.edge 1);

u = LOOKk(p.edge 2);
p.busy [k] = false;
if t=nil then return u;
else return t → u; /* create tree with t,u as siblings */

end LOOKk;

Figure 6.4 Straightforward SLL (k) LOOKk Algorithm on GLA

The straightforward algorithm makes no attempt to save the results of its computations for future

use and, hence, may exhibit exponential behavior derived from the recursive nature of grammars.

It most certainly will encounter the exponential size of LOOKk information. This algorithm is

roughly O (| G | k × | T | k) in the worst case. The next section presents an algorithm that, using

SLL 1(k) analysis results, attempts to reduce the exponentiality derived from the huge lookahead

information.

105

6.2.3 Constrained LOOKk Algorithm

This section provides a LOOKk algorithm that is typically more efficient than the straight-

forward algorithm, but still does not cache computations; hence, the grammar-derived exponen-

tiality is ignored. It walks the GLA as before except that it does not follow every possible edge.

The size of the lookahead information, therefore, is reduced, but the results cannot be cached as

they are incomplete. This method is employed by ANTLR, the parser generator in PCCTS

[PDC92], to practically generate, without caching, LALL (k) parsers; the worst-case behavior of

the constrained algorithm is identical to the best-case/worst-case behavior of the straightforward

algorithm. We begin by discussing how the constrained LOOKk algorithm is used.

Before testing a production pair p,q for the SLL (k) condition, it is tested for the SLL 1(k)

condition because LOOKk
1 has linear time and space complexity. When no lookahead depth

separates p and q, Λn
p ∩ Λn

q ≠ ∅ for all 1≤n ≤k, the pair is not SLL 1(k) and SLL (k) must be

attempted; recall that the Λn sets are computed by LOOKn
1 computation. The information gained

from SLL 1(k) analysis is still of value. During SLL (k) analysis, rather than compute the set of k-

sequences that predict productions p and q, it is sufficient to search for the set of k-sequences that

are possibly in common; i.e. in the intersection Λ′ = Λn
p ∩ Λn

q \\//---- n. Λ′ covers the set of all possi-

ble k-sequences that could render the pair non-SLL (k)-separable. By constraining the LOOKk

computation to traverse only those edges that may lead to a common k-sequence, the typical com-

plexity of the computation can be reduced significantly. The ‘‘constrained’’ algorithm is given in

Figure 6.5.

106

function LOOKk(p : Node, Λ : array of sets) returns tree of terminal;
begin

var t,u : tree of terminal;

if p=nil or k=0 then return nil;
if p.busy [k] then return nil;
p.busy [k] = true;
if p.edge 1 is-a-terminal then begin

if p.edge 1 ∈ Λk then

t =

LOOKk −1(p.edge 1)

↓
p.label 1

; /* create tree with label as root */

else
t = nil;

end;
else

t = LOOKk(p.edge 1);
u = LOOKk(p.edge 2);
p.busy [k] = false;
if t=nil then return u;
else return t → u; /* create tree with t,u as siblings */

end LOOKk;

Figure 6.5 Constrained SLL (k) LOOKk Algorithm on GLA

The input parameter Λ is the result of SLL 1(k) analysis and is an array comprised of Λn for

1≤n ≤k.

This constrained algorithm attempts to reduce the exponential behavior of the straightfor-

ward algorithm by pruning the size of the lookahead information, but, while the typical behavior

of this algorithm is good, it is still exponentially complex in the worst case; to compute all

LOOKk trees using the constrained algorithm, the worst-case time and space complexity is

O (| G | k × | T | k) as per Section 4.10. The next section describes an algorithm that overcomes

the grammar-derived exponentiality, but still must contend with exponential lookahead informa-

tion size.

6.2.4 LOOKk Algorithm With Caching

The straightforward algorithm ignores both the grammar-derived and lookahead informa-

tion size exponentialities while the constrained algorithm attempts to reduce the lookahead infor-

mation size. In this section, we present an algorithm that reduces LOOKk complexity by attack-

ing the grammar-derived exponentiality; results of its computations are cached for use by future

107

computations. A caching mechanism similar to that used by the LOOKk
1 algorithm can be used

for this task. However, LOOKk
1 only had to store sets, but LOOKk has to save trees. Because

each decision can have O (| T | k) lookahead k-tuples, this cache is extremely large in the worst-

case. Fortunately, this worst case rarely appears for real grammars.

Cache entries consist of a tree of terminals and a completion flag, where the completion flag

is true if the cache entry may be used directly; a completion flag of false implies that the entry is

a reference to the cache entry of another nonterminal which is the head of a cycle. A cache entry

exists for entry and exit state of each nonterminal and for each lookahead depth. The LOOKk

computation cache size in the worst case is, therefore, of size

O (
i =2
Σ
k

| T | i × | N |)

where the i =1 case is handled more efficiently by the LOOK1
1 algorithm.

Figures 6.6, 5.14, and 5.14 comprise the caching LOOKk algorithm; Figure 6.6 implements

the GLA recurrences given in Section 4.9.1 and is very similar to the cached LOOKk
1 algorithm in

terms of the caching steps. The only real difference lies in the computation of the lookahead

information itself.

108

function LOOKk(p : Node, var cycle : nonterminal) returns tree of terminal;
begin

var r,t,u : tree of terminal;
var cycle 1 , cycle 2 : nonterminal;

cycle 1 = not-a-cycle;
cycle 2 = not-a-cycle;
if (p is-node-with-cache) then return retrieve-from-cache(p, cycle);
if p.busy [k] then begin

cycle = p.rule;
return nil;

end;
p.busy [k] = true;
if p.edge 1 is-a-terminal then begin

t =

LOOKk −1(p.edge 1 ,cycle 1)

↓
p.label 1

; /* create tree with label as root */

if (cycle 1 is-cycle-to-current-node) then cycle 1 = not-a-cycle;
end;
else begin

t = LOOKk(p.edge 1 ,cycle 1);
if (cycle 1 is-cycle-to-current-node) then cycle 1 = not-a-cycle;

end
u = LOOKk(p.edge 2 ,cycle 2);
if (cycle 2 is-cycle-to-current-node) then cycle 2 = not-a-cycle;
p.busy [k] = false;
if t=nil then r = u;
else r = t → u; /* create tree with t,u as siblings */
if (p is-node-with-cache) then store-into-cache(r, p, cycle 1 , cycle 2);
return r;

end LOOKk;

Figure 6.6 LOOKk Algorithm on GLA with Caching

109

Retrieving trees from the cache is done by searching for a complete cache entry in one of

three ways. First, if the cache for a node, p, is nonempty and has a complete cache, return that

tree. If the cache is not complete, but is nonempty, the cache contains a single tree node which

points the nonterminal at the head of the cycle with p as a member; the cache entry for that non-

terminal at the head of the cycle may be used (if it is complete). Thirdly, if the cache for p is

empty, cache entries at larger values of k are sought as they contain a superset of the LOOKk

information; in general, the first n ≤k levels from the root of a LOOKk tree represents LOOKn . If

no complete cache entry is found, the actual computation is attempted.

110

function retrieve-from-cache(p : Node, var cycle : nonterminal) returns tree of terminal;
begin

var nt : nonterminal;
var node : Node;

if p.cache [k] not-empty then begin
if (p.cache [k] is-complete) then return deep-dup-unique(p.cache [k]);
else begin

nt = imaginary-terminal-to-nonterminal(p.cache [k]);
if (p is-entry-node) then node = entry-node-of(nt);
else node = exit-node-of(nt);
if (node.cache [k] is-complete) then

return deep-dup-unique(node.cache [k]);
else begin

cycle = nt;
return nil;

end;
end;

end;
else begin /* look for cache entries at higher values of k */

for i = k +1 to maximum-k-in-cache do begin
if (p.cache [k] not-empty and p.cache [i] is-complete) then

return bounded-deep-dup-unique(p.cache [i], k);
end;

end;
end retrieve-from-cache;

Figure 6.7 Cache Retrieval for Efficient SLL (k) LOOKk

111

When a tree is stored into the cache, the LOOKk algorithm returns only a reference to that

entry (a single-node tree which points to the cache entry) rather than making a complete copy of

the exponentially large tree. This allows a small amount of tree compression akin to common

subexpression elimination as future computations will have references to a cache entry rather

than a copy of the full tree. In most situations, however, deep, unique copies are made (reference

nodes are expanded to be copies of the trees referenced and terminals occur at most once at a k

level in the tree). LOOKk is very fast when shallow, versus deep, copies are made because tree

are of size O (| T | k), but, testing for C (k)-determinism is much slower due to the fact that it must

traverse many reference nodes before it discovers an actual terminal node. It is a tradeoff that

appears to favor making deep copies to save time later during nondeterminism detection.

112

procedure store-into-cache(var r : tree of terminal,
p : Node,
cycle 1 : nonterminal,
cycle 2 : nonterminal);

begin
var c : nonterminal;

/* cache this set for use by other functions if complete */
if (cycle 1 , cycle 2 are-not-cycles) then begin

p.cache [k] = r;
r = reference-to(r);
indicate-complete(p.cache [k]);
return;

end

/* if part of cycle, cache only cycle tree entry pointing to cycle nonterminal */
if (cycle 1 is-cycle or cycle 2 is-cycle) then
begin

if (cycle1 is-cycle) then c = cycle 1;
else c = cycle 2;
p.cache [k] = tree-node(nonterminal-to-imaginary-terminal(c));
indicate-incomplete(p.cache [k]);

end
end store-into-cache;

Figure 6.8 Cache Storage for Efficient SLL (k) LOOKk

113

The cached algorithm avoids the exponentiality derived from recursive grammars, which

cause redundant computations, but still encounters huge lookahead information trees. To com-

pute all LOOKk trees, the worst-case time and space complexity is O (| G | × k × | T | k) as per

Section 4.10.

This section provided an example LOOKk computation that demonstrated how GLA’s are

traversed and how child-sibling trees are employed to store lookahead information. Three algo-

rithms were then presented that implement the recurrences in Section 4.9.1. The straightforward

algorithm has two exponential terms in its complexity: | G | k implies that the recursive nature of

grammars forces redundant computations and | T | k reflects the worst-case size of lookahead

information. The constrained algorithm reduced the typical size of the lookahead information by

constraining its walk of the GLA. The caching algorithm attacked the grammar-derived exponen-

tiality by saving the results of computations. The straightforward and constrained lookahead

computation algorithms require O (| G | k × | T | k) time and space complexity in the worst case;

the constrained algorithm may encounter situations in which the lookahead cannot be constrained

and, hence, has the same worst-case complexity as the straightforward algorithm. The caching

algorithm has the best time and space complexity of the three at O (| G | × k × | T | k). The | G | k

term has been reduced to | G | × k because of computation caching.

6.3 Testing for the SLL (k) Property

Testing a grammar for the SLL (k) property is very similar to testing for the SLL 1(k) as

described in Section 5.13. As before, our approach involves computing SLL (k) lookahead sets

and then testing each grammar decision point for determinism. Previous work in this area did not

compute lookahead sets and is, hence, less practical when parser generation is the goal of gram-

mar analysis. As always great care is taken to avoid the exponentiality of lookahead information.

Recall the hierarchical approach of reducing lookahead computation complexity used by

algorithms in this thesis. First, only the lookahead sets that are needed to parse the language

described by the grammar are computed. Second, the lookahead depth, k, is modulated to use

minimum lookahead. Third, SLL 1(k) computations, which are linear in k, are attempted before

full SLL (k) computations. Algorithms which examine lookahead information, such as the

SLL (k) determinism algorithm, request lookahead computations in this manner. This section

presents statistics concerning the relative efficiency (run time) of analyzing grammars and pro-

vides an algorithm for testing grammars for the SLL (k) property.

114

6.3.1 Characteristics of SLL (k) Determinism

This section presents statistics regarding the efficiency of testing grammars for the SLL 1(k)

condition and the SLL (k) condition. The SLL (k) algorithm uses a combination of LOOKk
1 and

LOOKk computations.

The time complexity of testing for the SLL (k) property can be viewed as a function of the

number of LOOK operations and the amount of lookahead information which must be examined

for determinism. The caching mechanisms employed by our efficient grammar analysis algo-

rithms bound the number of LOOK operations on a state p to | G | × k — there are only k opera-

tions that are defined on each state and the results are cached for use by later requests for that

information. Hence, empirical studies should show that the average number of LOOK requests

per decision state is a linear function of k. Figure 6.9 shows that, indeed, when the number of

LOOK operations per decision state was averaged over 22 sample grammars, the number of

LOOK operations is a linear function of k.

-0

1

2

3

n ≤k

Number

LOOK

Ops

1 2 3 4

LOOKn
1

LOOKn

Figure 6.9 Average Number of LOOK Operations per Decision for SLL (n) Determinism

Notice, for k =1, LOOKn is never attempted because LOOK1
1 is equivalent to LOOK1 (both

compute sets of terminals), but LOOK1
1 is more efficient. The LOOKn curve follows roughly the

function k /4, which suggests that, because most decisions are SLL (1), increasing the maximum

allowable k does not dramatically increase the number of LOOK requests at the maximum depth.

Nondeterministic decisions force the SLL (k) determinism algorithm to consider deeper and

deeper lookahead since it does not know whether the decisions is nondeterministic for any k or

merely that an insufficient amount of lookahead has been attempted.

115

The number of LOOK computations is a linear function of k, but the cost of each can be

exponential. Hence, the time needed to analyze a grammar for the SLL (k) property is exponen-

tial for k >1. On the other hand, testing a grammar for the SLL 1(k) condition (a covering approx-

imation to SLL (k)), is a linear problem. To strengthen our claim of practicality, we present Fig-

ure 6.10 that illustrates the amount of time needed to analyze SLL (k) grammars. We have

included the time for ANTLR (ANother Tool for Language Recognition) [PDC92], the LALL (k)

parser generator of PCCTS, to analyze the same sample grammars; ANTLR is a widely used and

considered practical, thus, providing a good benchmark. The SLL (k) algorithm uses a combina-

tion of LOOKk
1 and LOOKk computations. Figure 6.10 demonstrates that SLL 1(k) is much more

efficient and is roughly linear whereas the SLL (k) analysis is exponential in k; SLL (3) is still,

however, very practical. The times were averaged over 22 sample grammars.

1 2 3 4 5 6

0.1

1

10

100

n ≤k

log scale

time

(sec)

.........
........

....
....

....
....

....
....
...
...
...
...
...
...
...
...
...
..

SLL 1(n)

SLL (n)

ANTLR LALL (n)

Figure 6.10 Average Analysis Time for SLL 1(n), SLL (n), and LALL (n) Determinism

The ANTLR analysis curve does not include sample 14 as ANTLR could not compute LALL (2)

or LALL (3) for this grammar (program exceeded internal data structure constraints); also,

ANTLR does not terminate for LALL (4) for most of the grammars. The figure indicates that con-

strained LOOKk is often very fast, but the grammar-derived nonlinearity becomes significant at

k =4; the cached LOOKk is exponential not in the grammar, but in the size of the lookahead trees

whereas the constrained algorithm manipulates pruned trees.

This section demonstrated that the number of lookahead operations per decision state can be

reduced from an exponential to a linear function with computation caching. Unfortunately, each

computation can be exponentially large, but for small k, we have shown that C (k) parsing is still

practical.

116

6.3.2 Algorithm for Testing for the SLL (k) Property

Avoiding full LOOKk operations is the primary goal of grammar analysis. Since

SLL 1(k) ⊂ SLL (k), if a lookahead decision is SLL 1(k) it is also SLL (k) and need not be tested for

the SLL (k) property; hence, LOOKk
1 operations are attempted first. When SLL 1(k) is insufficient,

LOOKk operations must be computed. The algorithm to test a grammar for the SLL (k) property

is presented in Figure 6.11. It is identical to the algorithm for SLL 1(k) except that, upon reaching

the maximum lookahead depth without having separated the production pair, full SLL (k) deter-

minism is examined, whereas, the SLL 1(k) algorithm would report a nondeterminism at this

point.

117

procedure testSLL(rule : nonterminal, max_k : integer);
begin

k = 1;
p = first-production-of rule;
while p ≠ nil do begin

f 1 = LOOKk
1(p.edge 1);

q = p.edge 2;
while q ≠ nil do begin

f 2 = LOOKk
1(q.edge 1);

while f 1 ∩ f 2 ≠ ∅ do begin
Λ = f 1 ∩ f 2;
if k=max_k then testFullLL (p,q,k, Λ);
else begin

k = k +1;
f 1 = LOOKk

1(p.edge 1);
f 2 = LOOKk

1(q.edge 1);
end;

end;
q = q.edge 2;

end;
p = p.edge 2;

end;
end testSLL;

Figure 6.11 Algorithm on GLA to Test SLL (k) Determinism

118

Only the non-SLL 1(k) production pairs in a decision point are examined for SLL (k) property; if

the other pairs are SLL 1(k) they are trivially SLL (k). Although it is not performed by this algo-

rithm, when | Λi | = 1 for i =1..k −1, no artificial tuples are generated by the Λ compression and,

hence, computing full SLL (k) information is unnecessary.

Just as the results of SLL 1(k) analysis can be used to reduce the complexity of SLL (k)

analysis (see Section 6.16.3 on the constrained LOOKk algorithm), SLL 1(k) lookahead informa-

tion can be used to reduce the complexity of testing two productions for the SLL (k) property.

The Λi sets, which are the intersection of LOOKi
1(p) and LOOKi

1(q), are computed for each loo-

kahead depth i; the information is used by the testFullSLL procedure to reduce the amount of

time required to test for the SLL (k) property. The algorithm to test a production pair for the

SLL (k) property is given in Figure 6.12.

procedure testFullSLL(p,q : Node, k : integer, Λ : array of sets);
begin

if k >1 then begin
f 1 = LOOKk(p.edge 1);
f 2 = LOOKk(q.edge 1);

end;
for n = 2 to k do begin

t = permutation(Λ, n);
while t ≠ nil do begin

if tree-member(f 1 , t, n) and tree-member(f 2 , t, n) and n=k then
report-nondeterminism;

t = permutation(Λ, n);
end;

end;
end testFullSLL;

Figure 6.12 Algorithm on GLA to Test for SLL (k) Determinism

The function permutation(Λ,n) used by testFullSLL returns a new lookahead n-string (tree

of depth n with n elements) from the lookahead space covered by Λ1 ... Λn . The tree-

member(f ,t,n) function returns true if lookahead string t is a member of tree f up to a depth of n

else it returns false.

Because SLL 1(1) is equivalent to SLL (1), nothing is done by testFullSLL when k =1. For

k >1, LOOKk is generally requested for both productions of the production pair. Testing for the

SLL (k) property is a simple matter of testing all permutations of length n in the Λ sets against the

first n levels in the lookahead trees. Only those n-tuples appearing the the Λ sets are attempted as

the Λ sets cover the intersection of the lookahead trees for productions p and q, thus eliminating a

large number of unnecessary comparisons. Any lookahead n-tuple that p and q have in common

is covered by the Λ set.

119

6.3.3 Complexity of Testing for the SLL (k) Property

The space complexity of testSLL is the same as testSLL 1 , but with the additional space

required for testFullSLL, which in turn requires space for LOOKk computations. Space complex-

ity of testSLL is, therefore, dominated by that of computing LOOKk
1 and LOOKk information,

which totals to O (| G | × k × | T | + | G | × k × | T | k) as per Section 4.10, or simply

O (| G | × k × | T | k).

To establish the worst-case time complexity of testSLL, we recall that the time complexity

of testSLL 1 is O (| G | × k × | T |) which will be the same for testSLL without the time needed to

perform testFullSLL. The time required to compute all full SLL (k) lookahead information is

O (| G | × k × | T | k) as per Section 4.10. Turning to the examination of the lookahead, we

observe that the outer loop of testFullSLL performs k −1 iterations and tests permutations of Λ,

looking for the minimum k which separates the two productions. The number of permutations

possible for Λk is | T | k in the worst case (Λi ⊆ T); hence, the inner loop could iterate O (| T | k)

times. Each permutation of length n is tested against the lookahead trees for p and q, which

requires time proportional to the tree size; this could be reduced to O (n) by representing the trees

as DFA’s for determinism testing purposes. Time to perform the lookahead examination portion

of testFullSLL for one production pair is then O (| T | k +1 × k). In the worst case, each nontermi-

nal and each production pair of the nonterminal, needs testFullSLL yielding a time complexity,

including the cost of lookahead computation, of

O (| G | × k × | T | k + | N | ×

YZ
[| N |

| P |\ \ \ \ \] Z
^ 2

× | T | k +1 × k)

where

YZ
[| N |

| P |\ \ \ \ \] Z
^ 2

is the average number of production pairs per nonterminal (| P | / | N | is a constant less than eight

normally in practice). Therefore, time complexity for all | N | invocations of testSLL plus the

time for all possible invocations of testFullSLL is

O (| G | × k × | T | + | G | × k × | T | k +
| N |
| P | 2\ \ \ \ \ \ × | T | k +1 × k)

120

Simplifying, we obtain

O (| G | × k × | T | k +
| N |
| P | 2_ _ _ _ _ _ × | T | k +1 × k)

which is roughly O (| G | × k × | T | k +1). By improving the strategy by which we compare k-

strings against lookahead trees, the complexity can be reduced to

O ((| G | + | P | 2/ | N |) × k × | T | k).

This section explored a method for testing grammars for the SLL (k) property. Our

approach resolves as many decisions as possible with SLL 1(k) lookahead, but failing that,

employs full SLL (k). In either case, the minimum necessary lookahead depth is used. We pro-

vided statistics demonstrating that the number of requests for lookahead by our SLL (k) determin-

ism algorithm is a linear function of k. Although, each LOOKk request is exponentially complex,

the number of grammar constructs that require LOOKk computations is small and, hence, our

method of SLL (k) analysis has a typical execution time that is practical as shown by Figure 6.10.

6.4 SLL (k) Parser Construction

Constructing SLL (k) parsers is a process of computing induces relations, constructing

heterogeneous decision states, and building executable programs that implement the heterogene-

ous states. This section describes how information from induces relations can be reduce in size

and represented as heterogeneous decision states. We present a number of different executable

decision state implementations followed by two example parser constructions.

6.4.1 Lookahead Information Compression

Lookahead information for conventional SLL (k) decisions has space complexity O (| T | k).

This exponentiality can be reduced by using the minimum possible lookahead depth, k, and by

employing SLL 1(k) decisions whenever possible. In the event that SLL 1(k) is insufficient, full

SLL (k) decisions must be constructed. However, heavy compression is possible even for these

decisions.

Consider the generic SLL (k) induces relation in Table 6.3 where m is the number of pro-

ductions of A and k is the minimum necessary lookahead.

121

Table 6.3 Generic SLL (k) induces Relation for Nonterminal A

` `
Lookahead (τ1 , ..., τk) ∈ T k Action` `` `

LOOKk(A → a α1) predict A → α1

LOOKk(A → a α2) predict A → α2

... ...

LOOKk(A → a αm) predict A → αm` `bbb
bb
bb
bb

bbb
bb
bb
bb

bbb
bb
bb
bb

Using an SLL 1(k) decision offers the most significant reduction because SLL 1(k) lookahead deci-

sions have size O (| T | × k). The generic SLL 1(k) induces relation is shown in Table 6.4.

Table 6.4 Generic SLL 1(k) induces Relation for Nonterminal A

` `
Lookahead τ1 , ..., τk ∈ T,T, ..., T Action` `` `

LOOK1
1 (A → a α1), ..., LOOKk

1(A → a α1) predict A → α1

LOOK1
1 (A → a α2), ..., LOOKk

1(A → a α2) predict A → α2

... ...

LOOK1
1 (A → a αm), ..., LOOKk

1(A → a αm) predict A → αm` `bbb
bb
bb
bb

bbb
bb
bb
bb

bbb
bb
bb
bb

When an SLL 1(k) decision is not possible, SLL (k) must be used. To compress full SLL (k) infor-

mation, we consider when SLL 1(k) decisions are insufficient: SLL 1(k) decisions are insufficient

when an artificial lookahead k-string for a production, created by SLL 1(k) compression, collides

with a real tuple from another production’s LOOKk set. A SLL 1(k) decision can be augmented to

test for the ‘‘offending’’ k-strings as a special case, thus, resolving the nondeterminism; this

hybrid decision is an SLL (k) decision because it uses k-tuples, but has much smaller space

requirements than the conventional SLL (k) decision in practice.

In general, for any production pair A → α and A → β, the number of real tuples from

LOOKk(A → a β) that collide with artificial tuples resulting from LOOKi
1(A → a α) for 1≤1≤k is

smaller than the full LOOKk(A → a α) set. As the degenerate case, when SLL (k) reduces to

SLL 1(k), the number of real tuples from LOOKk(A → a β) that collide with artificial tuples from

LOOKi
1(A → a α) for 1≤1≤k is zero. On the other extreme, every real tuple from

LOOKk(A → a β) could collide with artificial tuples from LOOKi
1(A → a α) for 1≤1≤k, which

renders the two productions purely SLL (k) separable; a hybrid decision for these two productions

is futile as only k-tuple comparisons are sufficiently powerful.

122

Computing a discriminant (separating) function for predicting productions A → α and

A → β is done by computing the ∆k(A, α, β) and ∆k(A, β, α) discriminant k-tuple sets, which are

the artificial tuples from A → α that collide with real tuples of A → β and vice versa. Define

∆k(A, α, β) = LOOKk(A → c β) ∩ artificial-tuples(Λα)

with

Λα = { LOOK1
1 (A → c α), LOOK2

1 (A → c α), ..., LOOKk
1(A → c α) }fP

and

artificial-tuples(Λα) = tuples (Λα) − LOOKk(A → c α)

where the function ‘‘tuples’’ returns the set of k-tuples generated by permutations of the Λi sets

and ‘‘artificial-tuples’’ is the set of tuples generated by the Λi sets, but which do not correspond

to valid lookahead k-tuples.

Decision states for nonterminals with only two productions, A → α and A → β, are then

easily constructed via the template in Figure 6.13.

upon τ1 ∈ Λ1
α and τ2 ∈ Λ2

α and ... and τk ∈ Λ1
α and (τ1 , τ2 , τ3) ∈/ ∆k(A, α, β) predict A → α;

upon τ1 ∈ Λ1
β and τ2 ∈ Λ2

β and ... and τk ∈ Λk
β and (τ1 , τ2 , τ3) ∈/ ∆k(A, β, α) predict A → β;

Figure 6.13 Hybrid State for Nonterminal with Two Productions

When both ∆k are ∅, the decision state reduces to an SLL 1(k) state. When

∆k(A, α, β) = LOOKk(A → c β) and ∆k(A, β, α) = LOOKk(A → c α), the decision is a purely

SLL (k) decision; it reduces to that in Figure 6.14 where the ‘‘(τ1 , τ2 , τ3) ∈/ ∆k’’ expressions have

been replaced by the appropriate LOOKk sets.

123

upon (τ1 , τ2 , τ3) ∈ LOOKk(α) predict A → α;

upon (τ1 , τ2 , τ3) ∈ LOOKk(β) predict A → β;

Figure 6.14 Purely SLL (k) State for Nonterminal with Two Productions

The use of ∆ discriminant sets is advantageous in practice, but can perform unnecessary

tuple comparisons in the worst case. Consider the maximum size of the discriminant tuple sets.

Lemma 6.1: For any production A → αi , |
j

∪ ∆k(A, αi , αj) | < |
j

∪ LOOKk(αj) | .

Proof:

By definition ∆k(A, αi , αj) = LOOKk(A → d αj) ∩ artificial-tuples(Λα), which is clearly no

larger than LOOKk(A → d αj). Hence, the combined size of all ∆ sets is no greater than the

combined size of all LOOK sets. Because ∆k(A, αi , αj) = ∅, the combined size of the ∆ sets is

strictly smaller than the combined size of all LOOK sets.e
Lemma 6.1 indicates that, when there are exactly two alternative productions that are not SLL 1(k)

separable, the use of discriminant sets is always beneficial; the ∆ sets can be no worse that doing

tuple membership operations with LOOK sets. In the extreme, all m productions for a nontermi-

nal are non-SLL 1(k) separable; each prediction expression would be bounded by the combined

size of all LOOK sets. Therefore, worst-case, the hybrid SLL (k) decision state with m alternative

productions is m times as large as a normal SLL (k) (ignoring the relatively small cost of doing

the m × k set comparisons). The break-even point occurs when the combined size of the required

∆ sets equals the combined size of the m LOOK sets. In practice, ∆k sets are much smaller than

LOOKk sets because the lookahead overlap between alternative productions is typically low.

The relationship between SLL 1(k) states and SLL (k) ∆k sets is characterized by Theorem

6.1.

Theorem 6.1: if A → αi and A → αj are SLL 1(k) separable, then ∆k(A, αi , αj) =
∆k(A, αj , αi) = ∅ for some i and j.

124

Proof:

For two productions to be SLL 1(k) separable, Λn
i and Λn

j must be disjoint for some lookahead

depth n ≤k by Lemma 6.1. This implies that there are no real or artificial tuples in common

between the lookahead sets for both productions. Hence, there can be no real tuples derived from

A → αj that collide with artificial tuples derived from A → αi ⇒ ∆k(A, αi , αj) = ∅. Similarly,

there cannot be a real tuple derived from A → αi that collides with an artificial tuple derived from

A → αj ⇒ ∆k(A, αj , αi) = ∅.f
Theorem 6.1 provides sufficient conditions for an SLL (k) state construction algorithm to avoid

computation of ∆ discriminant sets. In effect, the Theorem 6.1 and Lemma 6.1 suggest that

SLL 1(k) should be attempted before SLL (k) and, further, when SLL (k) is required, hybrid

SLL 1(k)/SLL (k) states should be constructed as they are typically smaller than equivalent normal

SLL (k) states; hence, SLL 1(k) analysis is performed for every decision point in the grammar,

never having been done unnecessarily.

Given a nonterminal, SLL (k) heterogeneous state construction is accomplished via the algo-

rithm in Figure 6.15.

procedure constructSLL(A : nonterminal, Λ : array of sets);
begin

add ‘‘τ1 ∈ Λ1
αi and τ2∈ Λ2

αi and ... and τk ∈ Λ1
αi ’’ to prediction expression for A → αi;

add ‘‘τ1 ∈ Λ1
αj and τ2∈ Λ2

αj and ... and τk ∈ Λ1
αj ’’ to prediction expression for A → αj;

for each non-SLL 1(k) production pair A → αi and A → αj begin
f 1 = LOOKk(A → g αi);
f 2 = LOOKk(A → g αj);
n = minimum lookahead depth such that productions i and j are SLL (n) separable;
d 1 = ‘‘(τ1 , τ2 , τ3) ∈ ∆n(A, αi , αj)’’;
d 2 = ‘‘(τ1 , τ2 , τ3) ∈ ∆n(A, αj , αi)’’;
add d 1 to prediction expression for A → αi;
add d 2 to prediction expression for A → αj;

end;
end constructSLL;

Figure 6.15 Algorithm on Grammar to Construct SLL (k) Decision States

The construction algorithm assumes no order of testing when computing the prediction

expressions; i.e. each expression is completely self-contained and does not require the results of

previous tests. Although this can be a necessary feature for many implementation algorithms, a

much smaller state can be constructed if the expressions are executed in a particular order. For

example, if the expressions are guaranteed to execute first to last, then the expression for produc-

tion A → αi has no need to examine the ∆k(A, αi , αj) for j =1..i −1. Further, they do not need to

125

be computed by the construction algorithm, which increases grammar analysis speed; even if

computed needlessly, a decision state implementation mechanism can simply ignore the

unneeded ∆ sets.

6.4.2 Implementation of Heterogeneous Decision States

Lookahead decision implementations can be categorized as either m-ary or non-m-ary

where an m-ary implementation maps a terminal lookahead sequence to one of m induces pro-

duction predictions using a single prediction expression and are of the form M [τ1 , ...,τn] where

n ≤k and M maps the lookahead to a unique production. On the other extreme, a series of m tests

(prediction expressions) can be made, one for each production, to see which production is

predicted by the current lookahead buffer. Table 6.5 summarizes the popular m-ary decision

implementation techniques.

126

Table 6.5 Implementation Strategies for m-ary Lookahead Decisions

h h
This is the obvious solution, but has huge space requirements,

which incidentally, is what probably led others to consider k >1

lookahead impractical. Even sparse-matrix and table compression

techniques can be large or impractically slow. This technique has

time O (k) and space O (T k) without compression.

Table[ττ1 , ..., ττk]

h h
This technique holds much more promise than a straight table, but

can also require large tables to obtain good performance. An

interesting direction in this area is perfect hashing techniques

which might be applied to good effect. This technique has time

O (k) and the space requirements can reach O (T k) in the worst-

case.

Hash table

h h
This method temporarily remaps terminals to different values to

obtain set of hyperplanes; simple, non-overlapping regions are

created in tuple space. Computing a terminal translation mapping

could be expensive, but a simple relational operator could be used

to predict productions. This technique has time O (k) and space

O (| T | k) at parser run-time (if a terminal remapping exists).

Token renumbering

h hiii
ii
ii
ii
ii
ii
ii
ii
ii
ii
ii
ii
ii

iii
ii
ii
ii
ii
ii
ii
ii
ii
ii
ii
ii
ii

iii
ii
ii
ii
ii
ii
ii
ii
ii
ii
ii
ii
ii

127

These techniques are not feasible for SLL (k) due to exponential lookahead space requirements. If

a series of tests is made, the size of a lookahead decision state can be dramatically reduced at the

cost of a small reduction in parser speed. Table 6.6 summarizes a few of the options in non-m-

ary decision implementations.

128

Table 6.6 Implementation Strategies for Non-m-ary Lookahead Decisions

j j
Using a (nearly balanced) decision tree can be used to make an

log m mapping. To use this method, an ordering must be

established to allow traversal of the tree. This method has time

complexity O (log m) and space complexity of O (log m × | T | k).

Note that a tree would roughly the same as a lookahead DFA.

Decision tree

j j
As with the decision tree, a series of tests can be much cheaper

than a single decision. On average, this implementation is O (m)

because most decisions are SLL (1) where m is the number of

productions for a nonterminal. This decision mechanism is trivial

to construct. No ordering is necessary for this method to find the

correct production. Tests can be simpler than the tree method

because more tests are performed on average. This method has the

additional benefit that the productions with highest frequency of

application can be specified first to decrease average prediction

time. Also, each test in the sequence may use a different

lookahead depth. Time is O (m × | T | k) in the worst case, but the

hybrid SLL 1(k)/SLL (k) mechanism can be used as described.

Series of Tests

j jkkk
kk
kk
kk
kk
kk
kk
kk
kk
kk
kk
kk
k

kkk
kk
kk
kk
kk
kk
kk
kk
kk
kk
kk
kk
k

kkk
kk
kk
kk
kk
kk
kk
kk
kk
kk
kk
kk
k

129

For SLL (k), m-ary tests are infeasible because the hybrid SLL 1(k)/SLL (k) states, which

appear to be the best way to build practical SLL (k) parsers, are not simple k-tuple to action map-

pings. On the other hand, one could build small hash tables to test for ∆ set membership. In our

experience, gained mainly from PCCTS, full SLL (k) decisions are rare and of those full SLL (k)

decisions, the ∆ sets are few and small — hash tables are overkill. Therefore, as with SLL 1(k) we

advocate a series of tests rather than one of the m-ary decision mechanisms and employ

recursive-descent parsers because of their flexibility.

6.4.3 Example SLL (k) Parser Constructions

We introduce recursive-descent parser construction via grammar Grammar G6.3.

B → cd

B → ab

A → ad

A → B

G6.3

The SLL 1(2) induces relation is given in Figure 6.7.

Table 6.7 SLL 1(2) induces Relation for Nonterminal A in Grammar G6.3

l l
Lookahead τ1 ,τ2 ∈ T,T Actionl ll l

{a,c},{b,d} predict A → B

{a},{d} predict A → adl lmmm
mm
m

mmm
mm
m

mmm
mm
m

The two productions of A are not SLL 1(2) separable because no single lookahead depth can be

used to distinguish between the productions. A parser-generator must then turn to SLL (2). The

appropriate hybrid state, as computed by constructSLL, is given in Figure 6.16.

130

upon τ1 ∈ {a,c} and τ2 ∈ {b,d} and (τ1 , τ2) ≠ (a,d) predict A → B;

upon τ1 = a and τ2 = d predict A → ad;

Figure 6.16 Hybrid SLL (k) State for Nonterminal A of Grammar G6.3

The ∆2(A, ad, B) = ∅ is not included for the second prediction expression as there are no

artificial tuples generated by Λad = {a},{b}. A recursive-descent procedure that would imple-

ment nonterminal A is given in Figure 6.17.

procedure A;
begin

if τ1 ∈ {a,c} and τ2 ∈ {b,d} and (τ1 ,τ2) ≠ (a,d) then begin
B;

end;
elseif τ1 = a and τ2 = d then begin

MATCH(a);
MATCH(d);

end;
end A;

Figure 6.17 SLL (2) Implementation of A for Grammar 6.3

As mentioned above, the order of prediction expression evaluation can reduce the size of a parser.

Figure 6.18 shows a functionally equivalent, but smaller parser.

131

procedure A;
begin

if τ1 = a and τ2 = d then begin
MATCH(a);
MATCH(d);

end;
elseif τ1 ∈ {a,c} and τ2 ∈ {b,d} then begin

B;
end;

end A;

Figure 6.18 Alternate SLL (2) Implementation of A for Grammar 6.3

Because the special case of tuple (a,d) has already been tested for in the first prediction expres-

sion, the second does not need to consider it. To reiterate, the i th prediction expression need not

consider ∆ sets associated with productions 1..i −1.

As a more complicated example, consider Grammar G6.4.

C → cx

C → yb

C → ad

B → cd

B → ab

A → C

A → B

G6.4

Table 6.8 SLL (2) induces Relation for Nonterminal A in Grammar G6.4

n n
Lookahead (τ1 ,τ2) ∈ T 2 Actionn nn n

(a,b) predict A → B

(c,d) predict A → B

(a,d) predict A → C

(y,b) predict A → C

(c,x) predict A → Cn nooo
oo
oo
oo
o

ooo
oo
oo
oo
o

ooo
oo
oo
oo
o

132

Table 6.9 SLL 1(2) induces Relation for Nonterminal A in Grammar G6.4

p p
Lookahead τ1 ,τ2 ∈ T,T Actionp pp p

{a,c},{b,d} predict A → B

{a,y,c},{b,d,x} predict A → Cp pqqq
qq
q

qqq
qq
q

qqq
qq
q

The set of artificial tuples for A → B is {(a,d),(c,b)} and {(a,b),(a,x),(y,d),(y,x),(c,d),(c,b)} for

A → C. There are three collisions to worry about: A Real tuple for A → C, (a,d), collides with

an artificial tuple for A → B, both valid tuples for A → B collide with artificial tuples of A → C,

and both productions have (c,b) as an artificial tuple.

upon τ1 ∈ {a,c} and τ2 ∈ {b,d} and (τ1 , τ2) ≠ (a,d) predict A → B;

upon τ1 ∈ {a,y,c} and τ2 ∈ {b,d,x} and (τ1 , τ2) ∈/ {(a,b),(c,d)}) predict A → C;

Figure 6.19 Hybrid State for Nonterminal A in Grammar G6.4

A recursive-descent implementation procedure for nonterminal A is provided in Figure 6.20.

procedure A;
begin

if τ1 ∈ {a,c} and τ2 ∈ {b,d} and (τ1 , τ2) ≠ (a,d) then begin
B;

end;
elseif τ1 ∈ {a,y,c} and τ2 ∈ {b,d,x} then begin

C;
end;

end A;

Figure 6.20 Hybrid SLL 1(2)/SLL (2) Implementation of A for Grammar 6.4

Notice that the special case test ‘‘ (τ1 , τ2) ∈/ {(a,b),(c,d)}’’ is unnecessary due to the prediction-

expression order of execution.

133

This chapter described how SLL (k) parsers may be constructed. The main principles

behind SLL (k) parsing have long been understood from a theoretical point of view, but little

practical work has been done because SLL (k) parsing was considered intractable. We have

demonstrated the practicality of SLL (k) lookahead computation, testing grammars for the SLL (k)

property, and constructing SLL (k) parsers for k >1.

Section 6.16 provided three algorithms for computing SLL (k) lookahead information that

implement the recurrences in Section 4.9.1. The lookahead for a particular position, p, in a gram-

mar is computed by walking the associated GLA collecting the non-ε edges along paths emanat-

ing from the GLA state created for position p. The straightforward algorithm had two exponen-

tial terms in its complexity: | G | k from the recursive nature of grammars, which forces redun-

dant computations, and | T | k from the worst-case size of lookahead information. The con-

strained algorithm reduced the typical size of the lookahead information by constraining its walk

of the GLA to only those paths that can possibly lead to k-strings in common between produc-

tions. The caching algorithm removed the grammar-derived exponentiality by saving the results

of computations. The straightforward and constrained lookahead computation algorithms had

O (| G | k × | T | k) time and space complexity in the worst case whereas the caching algorithm had

O (| G | × k × | T | k).

Section 6.17 described how grammars may be tested for the SLL (k) property by comparing

the lookahead information of each production. By minimizing the lookahead depth, k, and by

first testing for the SLL 1(k) property, the time and space necessary to test grammars for the

SLL (k) property can be reduced significantly. In the worst case, our approach is dominated by

the time required to compute the lookahead information and can be implemented in time and

space O (| G | × k × | T | k).

Section 6.18 detailed the construction of practical SLL (k) parsers for k >1. We relied on

heavy lookahead-information compression to avoid the worst-case space requirement, O (| T | k),

of the lookahead information. Just as in SLL (k) property testing, the minimum lookahead is used

and SLL 1(k) decisions are used before resorting to SLL (k). Our compression techniques apply

equally well to all C (k) parsing strategies.

134

CHAPTER 7 LALL (k), LL (k), SLR (k), LALR (k), AND LR (k)

The previous chapters introduced new ways to represent lookahead information and gram-

mars, provided means of computing strong lookahead information, presented algorithms that test

grammars for the SLL 1(k) and SLL (k) property, and described methods for constructing SLL 1(k)

and SLL (k) parsers. The strong class of LL (k) parsers was emphasized because the lookahead

computation and parser construction mechanisms are the simplest, yet still effectively demon-

strate the important issues in the proposed construction methods. In this chapter, we explore the

other variants of LL (k) and outline how LR (k) and its variants can take advantage of the tech-

niques emphasized in this thesis. Further, we generalize these parsers to LL m(k) and LR m(k).

We begin by finishing off the LL (k)-based classes. The first section describes LALL (k)

[SiS82], which is perhaps the most useful of the LL (k) classes. With little modification, the

SLL (k) algorithms can be applied to LALL (k). The second section describes full LL (k). The

linear approximation to LL (k), LL 1(k), is of little use during grammar analysis, but proves very

useful during decision state construction as a compression technique. The remainder of the

chapter discusses the LR (k) variants beginning with SLR (k). The fourth section demonstrates

that the LOOKk and LOOKk
1 computations given for SLL (k) may be used directly for SLR (k).

The fifth section shows how LALR (k), like LALL (k), can use the techniques of linear lookahead

approximation to reduce decision state size. The sixth section describes full LR (k) and how, like

full LL (k), LR 1(k) analysis is not useful except for decision state compression. Finally, we

present the generalized parsers of LL m(k) ⊆ LL (k) and LR m(k) ⊆ LR (k), which use lookahead

decisions whose largest unit of comparison is an m-tuple for m ≤k.

7.1 LALL (k)

LALL (k) lies properly between the SLL (k) and LL (k) class of grammars [SiS82]; ANTLR

employs such parsers [PDC92]. LALL (k) is analogous to the LALR (k) class of grammars — the

parser resulting from the merging of all states of common core. Just as LALR (k) parsers have the

same number of states as SLR (k) parsers derived from the same grammars, LALL (k) parsers have

the same number of states as SLL (k) parsers. The difference lies in the accuracy of the lookahead

information. As a result, testing for the LALL (k) property is identical to testing for the SLL (k)

property except that the LOOKk and LOOKk
1 computations will return LALL (k) lookahead infor-

mation, which is a subset of the SLL (k) lookahead information. Parsers are constructed in

135

exactly the same manner as SLL (k) parsers, but again, using the more accurate LALL (k) looka-

head information. Hence, this section merely provides the modifications to the SLL (k) LOOK

algorithms necessary to compute LALL (k) information. We begin by describing the difference

between SLL (k) and LALL (k) lookahead.

When SLL (k) analysis reaches the exit state of some nonterminal, A, in a GLA, it proceeds

to compute the LOOK of all arcs emanating from the exit state. These FOLLOW-links point to

the states following each reference to A in other nonterminals’ states. Hence, SLL (k) analysis

combines the results of all FOLLOW operations when, in reality, at most one nonterminal can

reference A at a time; SLL (k) is a covering approximation to the real lookahead information.

SLL (k) analysis is said to use context-insensitive FOLLOW information whereas LALL (k) and

LL (k) analysis is said to use context-sensitive FOLLOW information. Two things can be done to

improve the accuracy of SLL (k) lookahead. First, when computing LOOKn(A → α r Bβ),

LOOKn′(A → αB r β) can be used rather than FOLLOW (B) if B does not always generate n-

strings where n′≤n. Second, prediction expressions of a nonterminal’s productions can be made

dependent on the context of the reference to that nonterminal; alternatively, the normal LL (k) to

SLL (k) conversion can be used, which makes nonterminal references unique by duplication.

LALL (k) embodies the first improvement and LL (k) incorporates both.

LALL (k) lookahead is more easily seen by example. Consider Grammar G7.1, which is

LALL (2), but not SLL (2).

C → cBd

B →
B → b

A → C

A → ad

A → aBc

G7.1

The partial SLL (2) induces relation is shown in Table 7.1.

136

Table 7.1 SLL (2) induces Relation for Nonterminal A in Grammar G7.1

s s
Lookahead (τ1 ,τ2) ∈ T 2 Actions ss s

(a,b) predict A → aBc

(a,c) predict A → aBc

(a,d) predict A → aBc

(a,d) predict A → ad

(c,b) predict A → C

(c,c) predict A → C

(c,d) predict A → Cs sttt
tt
tt
tt
tt
tt

ttt
tt
tt
tt
tt
tt

ttt
tt
tt
tt
tt
tt

Because (a,d) predicts both productions one and two of A, the SLL (2) induces is inconsistent.

However, the sequence ad can never be generated by A → aBc; the SLL (k) lookahead informa-

tion is a covering superset of the actual lookahead. Tuple (a,d) arises from the fact that the

SLL (2) analysis combined the symbols following all references to B. In fact, when called from A,

B can only be followed by terminal c. The LALL (2) (and LL (2)) induces relation has the correct

predictions; it is shown in Table 7.2.

Table 7.2 LALL (2) induces Relation for Nonterminal A in Grammar G7.1

s s
Lookahead (τ1 ,τ2) ∈ T 2 Actions ss s

(a,b) predict A → aBc

(a,c) predict A → aBc

(a,d) predict A → ad

(c,b) predict A → C

(c,d) predict A → Cs sttt
tt
tt
tt
t

ttt
tt
tt
tt
t

ttt
tt
tt
tt
t

LALL (2) lookahead information is smaller and more accurate than SLL (2) lookahead, but comes

at the cost of more complicated LOOKk and LOOKk
1 algorithms.

To compute the more accurate LALL (k) lookahead sets, two modifications to the LOOK

algorithms can be used, both of which, reduce the utility of the cache. The first is simpler, but

makes caching exceedingly complicated and, thus, less attractive. It involves enabling and disa-

bling the FOLLOW-links emanating from the nonterminal exit states. Unfortunately, the exit

state caches would have to contain entries for each context in which the associated nonterminal

could be referenced — an impractically large cache. The second method is a little more difficult,

137

but maintains a relatively straightforward caching mechanism. This modification requires a new

lookahead tree node type and has caches only in the nonterminal entry states.

We describe the second LALL (k) method by altering the uncached SLL (k) LOOKk algo-

rithm. Before LOOKk attempts to traverse an ε-arc in the GLA, resulting from a nonterminal

reference, the exit node for that referenced nonterminal is marked as busy (the state of the busy

flags is, naturally, saved before being marked). In this way, the LOOKk algorithm will not

traverse any FOLLOW-links for nonterminal references; LOOKk will only compute the FIRST in

this case. If LOOKk reaches the busy exit state, a special εn node is deposited in the tree in place

of the actual FOLLOW subtree. This εn node is to be distinguished from the ε edges in the GLA;

it is a place holder that indicates that LOOKn must be initiated on the GLA state following the

nonterminal reference state. In this way, the context-sensitive FOLLOW is computed. There

may be many εn nodes in the lookahead tree returned by a LOOKk invocation and the algorithm

must replace each instance with the appropriate subtree. Upon returning from the ε-arc computa-

tion, LOOKk(p.edge 1) computes LOOKn(p.follow) for each εn node. Edge p.follow is the node

where parsing would continue after recognizing the nonterminal pointed to by p.edge 1; i.e. for

A → α u 1 B u 2 β, p.follow is the edge from p, the node created for position u 1 , to the node created

for position u 2 . The modified algorithm is presented in Figure 7.1.

138

function LOOKk(p : Node) returns tree of terminal;
begin

var t,u : tree of terminal;
b : boolean;
e : Node;

if p==nil or k==0 then return nil;
if p.busy [k] then return nil;
p.busy [k] = true;
if (p.edge 1 is-a-terminal)

t =

LOOKk −1(p.edge 1)

↓
p.label 1

; /* make label root of what follows */

else begin
e = exit-state-of-nonterminal-referenced(p.edge 1);
b = e.busy [k];
e.busy [k] = true;
t = LOOKk(p.edge 1);
e.busy [k] = b;
for each εn node, q, in t do

replace-node-with-tree(q, LOOKn(p.follow));
end
u = LOOKk(p.edge 2);
p.busy [k] = false;
if t==nil then return u;
else return t → u; /* t,u are siblings in tree */

end LOOKk;

Figure 7.1 LALL (k) LOOKk Algorithm on GLA

139

The LOOKn(p.follow) computation may itself be barred from computing the FOLLOW if the

current nonterminal itself was referenced by another. In general, only the LOOKk computation at

the root of the recursive computation tree will be allowed to enter the exit state for the associated

nonterminal, thus, computing a global FOLLOW only in this case. LL (k) parsers solve this prob-

lem by splitting states. For example, LOOKk(B → v b) from Grammar G7.1, when not invoked

from another LOOK, enters the exit state for B and effectively computes FOLLOW (B) = {c,d}.

LL (k) analysis would treat c and d separately as they occur in different contexts.

Caching the results of the LALL (k) LOOKk is done by saving the results of LOOKk(p) in

p.cache [k] where p is the entry GLA state of some nonterminal; if that particular LOOKk is at the

root of the computation tree, the results are not cached as the lookahead tree will contain FOL-

LOW information. Therefore, only the FIRST of a nonterminal is cached (εn nodes included).

The LOOKk information does not contain FOLLOW information as it is a function of context; for

any nonterminal the number of situations in which it can be referenced is exponentially large.

Caching LOOKk for exit states is prohibitively expensive and is not done. Surprisingly, this lim-

ited caching mechanism does not render the LALL (k) algorithm impractical; e.g., ANTLR, the

parser generator of PCCTS, does not cache LOOKk information at all as it employs a constrained

LOOKk algorithm similar to that of Section 6.16.3.

Although lookahead trees are smaller during LALL (k) analysis, the lack of FOLLOW caching

probably leaves SLL (k) analysis faster, albeit less accurate. The constrained LOOK algorithms

cannot cache results as they compute lookahead information that is restricted to a subset of the

real lookahead; however, since the constrained approach avoids a large number of the LOOK

computations, it proves practical. Formally, LALL (k) parsers, resulting from this improved

analysis, are superior to SLL (k) parsers.

Theorem 7.2: SLL (k) ⊂ LALL (k) ⊂ LL (k) for k >1 [SiS90].

In summary, LALL (k) analysis computes more accurate lookahead than SLL (k) analysis by

using context-sensitive versus context-insensitive FOLLOW information during LOOK computa-

tions for nonterminal references. LALL (k) parsers are typically smaller than SLL (k) parsers and

have greater recognition strength; all of the SLL (k) parser construction mechanisms are immedi-

ately applicable to LALL (k) parser construction. The associated analysis algorithms are only

slightly more complicated and are, perhaps, a bit slower; the linear approximation methods,

LOOKk
1 , may still be applied to reduce analysis time. We conclude that LALL (k), which is nearly

LL (k), should be employed for parser generators designed for widespread use. We observe,

finally, that the one situation in which LALL (k) analysis is identical to SLL (k) analysis is the spe-

cial case which renders LALL (k) weaker than LL (k).

140

7.2 LL (k)

The LALL (k) parsers, described in the previous section, differ from SLL (k) parsers only in

the lookahead information; i.e. LALL (k) analysis yields more accurate lookahead sets. As a

result, methods used to test grammars for LALL (k) property and methods for constructing

LALL (k) parsers are identical to the SLL (k) techniques. LL (k) parsers, on the other hand, are

exponentially large, have more complicated analysis and construction algorithms, and are typi-

cally unable to use the linear approximation methods during analysis. LL (k) parsers are impracti-

cal for these reasons, but nonetheless we describe, for completeness, how LL (k) differs from

LALL (k) and how the linear approximation techniques described throughout this thesis can be

applied to reduce lookahead decision state size.

In general, LALL (k) lookahead computations only yield lookahead sequences that can be

generated by application of the production to be predicted. However, when predicting a produc-

tion of some nonterminal A that can generate strings shorter than the required lookahead, the

symbols following references to A must be used in the prediction. Determining which symbols to

include can only be determined at parser run-time because it depends on the context in which A

was invoked. During analysis only the set of possibilities is known. If there are r references to A,

then at least r distinct lookahead sets must be available to predict the production; in general, the

number of contexts is an exponential function of the grammar size. The parser state (context)

will determine which of the lookahead sets to use when A is invoked. LALL (k) (and SLL (k))

analysis merges all of the possible following terminal sequences and, hence, do not use context to

predict productions at parser run-time; this is the source of LALL (k)’s inferiority to LL (k).

The improved analysis of LL (k) can be incorporated into parsers by having multiple copies

of the states that predict the productions of A — one copy for each context. Another method,

which is effective for recursive-descent implementations, requires each procedure to define a

parameter that represents the context in which the procedure was invoked. A third method, which

operates on the grammar, makes each nonterminal reference unique by duplication and then

applies SLL (k) analysis; see [FiL88]. For our purposes, we choose a recursive-descent imple-

mentation to demonstrate this improved lookahead scheme.

Consider Grammar G7.2 which is LL (2), but not LALL (2).

C → yBba

B →
B → b

A → C

A → xBa

G7.2

The LALL (2) induces relation nonterminal B of this grammar is given in Table 7.3.

141

Table 7.3 LALL (2) induces Relation for Nonterminal B in Grammar G7.2

w w
Lookahead (τ1 ,τ2) ∈ T 2 Actionw ww w

(b,b) predict B → b

(b,a) predict B → b

(b,a) predict B →
(a, $) predict B →w wxxx

xx
xx
xx

xxx
xx
xx
xx

xxx
xx
xx
xx

This is obviously non-LALL (2) as (b,a) predicts both productions of B. However, when B is

invoked from A, ba can only be recognized by applying the first production; when B is invoked

from C, ba can only be recognized by applying the second production. Context removes the

LALL (2) inconsistency, hence, the decision is LL (2). Table 7.4 provides the LL (2) induces rela-

tion including context information.

Table 7.4 LL (2) induces Relation for Nonterminal B in Grammar G7.2

w w
Context Lookahead (τ1 ,τ2) ∈ T 2 Actionw ww w

2 (b,b) predict B → b

1 (b,a) predict B → b

2 (b,a) predict B →
1 (a, $) predict B →w wxxx

xx
xx
xx

xxx
xx
xx
xx

xxx
xx
xx
xx

xxx
xx
xx
xx

Using the full LL (2) information, Figure 7.2 provides a procedure that correctly implements B.

142

procedure B(ctxt:integer);
begin

if (ctxt =1 and τ1 = b and τ2 = a) or (ctxt =2 and τ1 = b and τ2 = b) then begin
MATCH(b);

end;
elseif (ctxt =1 and τ1 = a and τ2 = $) or (ctxt =2 and τ1 = b and τ2 = a) then begin
end;

end B;

Figure 7.2 LL (2) Implementation of B in Grammar 7.2

Each reference to B is given a unique integer that represents context; here, context is deceptively

simple as only two values are required. In general, context information for B would encode the

entire path from start symbol to the invocation of B. There are, unfortunately, an exponential

number of possible contexts; this is the source of LL (k) impracticality.

Although they are generally impractical, LL (k) parsers can still take advantage of the linear

approximation techniques. Consider an LL (k) decision state with m possible transitions. Let ti
represent the k-deep lookahead tree that induces the i th transition. The compressed lookahead

sets are trivially computed by merging all lookahead terminals at each depth j into Λ j
i for 1≤j ≤k.

As before, if there is a lookahead depth that separates each transition-pair, the decision is LL 1(k);

in this case, the decision state would be linear in k rather than exponential. When it is not

LL 1(k), we employ the ∆k discriminant sets exactly as used for SLL (k); inside a decision state

there is no difference between SLL (k), LALL (k) and LL (k) (or any of the LR (k) variants).

LL (k) parsers are stronger than SLL (k) and LALL (k) parsers, but are exponential in size;

the lookahead decision states may be reduced to near linear size, but the number of states will

always be exponential in the worst case. We have shown how LL (k) lookahead differs from

LALL (k) lookahead and described how this lookahead can be compressed using LL 1(k) and

hybrid LL 1(k)/LL (k) decisions as done for SLL (k) decision states.

7.3 SLR (k)

Although SLR (k) parsers are very different from SLL (k) parsers, the lookahead computa-

tions are identical and the LOOK algorithms may be used without modification; SLR (k) analysis

uses ‘‘global’’ FOLLOW information just like SLL (k) analysis. As a result, the linear approxi-

mation LOOKk
1 algorithm can be used to reduce SLR (k) analysis time. As an example, consider

Grammar 7.3 which is SLR (2); we will also use this grammar during the discussions of LALR (k)

and LR (k).

143

C → aAx

B → b

B → a

A →
A → C

S → AB $ $

G7.3

A portion of the SLR (2) machine is shown in Figure 7.3.

S → y AB$$

A → y C

A → y
C → y aAx

C → a y Ax

A → y C

A → y
C → y aAx

a

a

S 1:

S 2:

Figure 7.3 Partial SLR (2) Machine for Grammar G7.3

SLR (k) parser construction algorithm is different from SLL (k), but, once again, the linear

approximation mechanism can be applied to reduce the size of SLR (k) decision states; this pro-

perty will hold true for LALR (k) and LR (k) as well. Table 7.5 describes the normal SLR (2)

action table for the partial SLR (2) machine as encoded by an induces relation.

144

Table 7.5 SLR (2) induces Relation for Partial SLR (2) Machine For Grammar G7.3

z z
Action Tablez z

State Lookahead (τ1 ,τ2) ∈ T 2 Actionz zz z
(a, $) reduce A →
(b, $) reduce A →
(x,a) reduce A →
(x,b) reduce A →
(x,x) reduce A →
(a,a) shift, goto S 2

(a,b) shift, goto S 2

S 1

(a,x) shift, goto S 2z z
(a, $) reduce A →
(b, $) reduce A →
(x,a) reduce A →
(x,b) reduce A →
(a,a) shift, goto S 2

(a,b) shift, goto S 2

S 2

(a,x) shift, goto S 2z z{{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{

{{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{

{{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{

{{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{

145

The ‘‘goto’’ table, which maps nonterminals to states, is not included because it does not depend

on lookahead information. The SLR (2) action table, however, maps a lookahead sequence to a

shift or a reduce action. SLR (k) lookahead computations may use the SLL (k) LOOKk directly.

Notice that LOOKk(A → |), as defined in Chapter 6, is exactly the set of lookahead sequences

that induces a reduce A → action and that LOOKk(C → | aAx) is exactly the lookahead set that

induces a shift, goto S 2 action.

The linear approximation LOOKk
1 algorithm can also be applied for SLR (k) grammars without

modification to reduce analysis time. Grammar G7.3 is SLR (2) and SLR 1(2). Consider the

SLR 1(2) induces relation in Table 7.6, which could be computed via LOOKk
1 or by simply com-

puting Λi sets (compressing all terminals at lookahead depth i for all i).

Table 7.6 SLR 1(2) induces Relation for Partial SLR (2) Machine For Grammar G7.3

} }
Action Table} }

State Lookahead τ1 ,τ2 ∈ T,T Action} }} }
{a,b,x}, {a,b,x, $} reduce A →

S 1 {a}, {a,b,x} shift, goto S 2} }
{a,b,x}, {a,b,x, $} reduce A →

S 2 {a}, {a,b,x} shift, goto S 2} }~~~
~~
~~
~~
~~

~~~
~~
~~
~~

~~~
~~
~~
~~

~~~
~~
~~
~~
~~

The SLR 1(2) compressed induces relation is not deterministic as there is no lookahead depth that

is disjoint for the lookahead/action pair (interestingly, the LALR 1(2) and LR 1(2) induces rela-

tions are deterministic). As with the LL (k) variants, the hybrid state techniques of Chapter 6 can

be used to reduce the size of the lookahead information even though they are not SLR 1(k). For

example, state S 1 can be implemented as the heterogeneous automaton state in Figure 7.4.

upon τ1 ∈ {a,b,x} and τ2 ∈ {a,b,x, $} and (τ1 , τ2) ∈/ {(a,a),(a,b),(a,x)} reduce A →;

upon τ1 = a and τ2 ∈ {a,b,x} shift, goto S 2;

Figure 7.4 Heterogeneous Automaton State for State S 1 of Figure 7.3



146

To store lookahead information, the state in Figure 7.4 requires three terminal sets (at

| T | /wordsize words each), 1 terminal, and three 2-tuples for a total of

O (3 × | T | / wordsize + 1 + 6) (about 7) words. Without the hybrid technique, a normal state

would need to store eight 2-tuples for a total of 16 words. The O ( | T | k) storage requirements for

a conventional parser state quickly surpass the ‘‘sets plus a few tuples’’ approach of the

SLR 1(2)/SLR (2) state.

SLR (k) is not commonly used, but its relationship to SLL (k), with regards to lookahead and

decision states, is interesting — SLL (k) lookahead computation algorithms may be used directly.

Accordingly, since SLR (k) parsers have sizes linear in the grammar size, we observe that linear

SLR 1(k) parsers and near-linear SLR (k) parsers can be obtained contrary to the conventional wis-

dom that they are always exponential due to lookahead information size.

7.4 LALR (k)

LALR (1) parsers are very common due to the proliferation of LALR (1) parser generators.

LALR (k), in contrast, is almost unknown for practical systems. As with SLR (k), LALR (k)

parsers are considered an exponential problem due to the size of the lookahead information.

However, the fact that LALR (k) and LALL (k) parsers are duals [SiS90] of each other, implies

that LALR (1) LOOKk
1 lookahead computations may be defined and used to reduce grammar

analysis time and lookahead decision state size.

Reconsider Grammar G7.3; Figure 7.5 shows the same portion of the LALR (2) machine that

Figure 7.3 shows of the SLR (2) machine.



147

S → � AB $ $ , {$$}

A → � C , {a $,b $}

A → � , {a $,b $}

C → � aAx , {a $,b $}

C → a � Ax , {a $,b $,xa,xb}

A → � C , {xa,xb,xx}

A → � , {xa,xb,xx}

C → � aAx , {xa,xb,xx}

a

a

S 1:

S 2:

Figure 7.5 Partial LALR (2) Machine for Grammar G7.3

Table 7.7 describes the normal LALR (2) action table for the partial LALR (2) machine as encoded

by an induces relation.

Table 7.7 LALR (2) induces Relation for Partial LALR (2) Machine For Grammar G7.3

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Action Table� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

State Lookahead (τ1 ,τ2) ∈ T 2 Action� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
(a, $) reduce A →
(b, $) reduce A →
(a,a) shift, goto S 2

S 1

(a,b) shift, goto S 2� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
(x,a) reduce A →
(x,b) reduce A →
(x,x) reduce A →
(a,a) shift, goto S 2

S 2

(a,x) shift, goto S 2� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

The lookahead information in Table 7.7 is a subset of the lookahead in Table 7.5; SLR (k) and

LALR (k) parsers have the same states, but LALR (k) parsers have more accurate lookahead infor-

mation (at the cost of more complicated grammar analysis algorithms). Grammar G7.3 is not

SLR 1(2), but it is LALR 1(2). Again, we compress the lookahead via computation with LALR 1(k)



148

LOOKk
1 or by computing Λi from the LOOKk information; see Table 7.8.

Table 7.8 LALR 1(2) induces Relation for Partial LALR (2) Machine For Grammar G7.3

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Action Table� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

State Lookahead τ1 ,τ2 ∈ T,T Action� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
{a,b}, {$} reduce A →

S 1 {a}, {a,b} shift, goto S 2� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
{x}, {a,b,x} reduce A →

S 2 {a}, {a,x} shift, goto S 2� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ����
��
��
��
��

���
��
��
��

���
��
��
��

���
��
��
��
��

Lookahead depth two separates the action pair in state S 1 and depth one separates the action pair

in state S 2 . Figure 7.6 shows a heterogeneous decision state that implements the state S 1’s

LALR 1(2) decision.

upon τ1 ∈ {a,b} and τ2 ∈ {$} reduce A →;

upon τ1 = a and τ2 ∈ {a,b} shift, goto S 2;

Figure 7.6 Heterogeneous Automaton State for State S 1 of Figure 7.5

A conventional lookahead decision state for S 1 would need space for four 2-tuples whereas the

LALR 1(2) state requires space for only three bit sets and a word, which yields a reduction in

space from 8 words to about 2. The decision state for S 2 can be implemented as two terminal

comparisons rather than the conventional 5 2-tuple compares.

LALR (2) is the dual of LALL (2) and can similarly use the linear approximation LALR 1(2)

when analyzing grammars. In addition, the decisions in states S 1 and S 2 are LALR 1(2) resulting

in very small space requirements; the SLR (2) version was not also SLR 1(2), but still was able to

take advantage of the Λi sets to construct small hybrid states. Because grammar G7.3 is

LALR 1(k), it is also LR 1(2) as we shall see in the next section.



149

7.5 LR (k)

The LR (k) parsing method has little to gain from the linear approximation analysis as the

number of parser states is exponential and full k-lookahead info must be moved along during

state construction in case it is needed. However, any induces relation (decision state) may utilize

linear approximation compression even if compressed analysis is not performed; see Sections

7.20 and 6.18 for a description of how induces relations can be compressed. We conclude that

LR 1(k) is useful only as a state compression technique and cannot be used to reduce the exponen-

tially complex state construction algorithm. For completeness, this sections provides the LR (2)

machine analog of the SLR (2) and LALR (2) machines of previous sections for Grammar G7.3.

Splitting state S 2 of Figure 7.5 results in the LR (2) machine as shown in Figure 7.7.



150

S → � AB $ $ , {$$}

A → � C , {a $,b $}

A → � , {a $,b $}

C → � aAx , {a $,b $}

C → a � Ax , {a $,b $}

A → � C , {xa,xb}

A → � , {xa,xb}

C → � aAx , {xa,xb}

C → a � Ax , {xa,xb}

A → � C , {xx}

A → � , {xx}

C → � aAx , {xx}

C → a � Ax , {xx}

A → � C , {xx}

A → � , {xx}

C → � aAx , {xx}

a

a

a

a

S 1:

S 2:

S 3:

S 4:

Figure 7.7 Partial LR (2) Machine for Grammar G7.3



151

The LR (2) machine clearly points out that the amount of lookahead information decreases as we

progress from SLR (2) to LALR (2) to LR (2) while the number of states increases quickly; LR 1(2)

analysis is not possible, but the associated compression can still be used to reduce decision state

complexity. States S 2 , S 3 , and S 4 are all LR (1) decisions and are, therefore, efficient. State S 1 is

LR (2) and uses the S 1 induces relations in Tables 7.7 and 7.8.

Full LR (k) lookahead sets must be moved along from state to state during LR (k) machine

construction; in addition, LR (k) parsers have an exponential number of states. Hence, LR (k)

decision states may take advantage of the linear compression, LR 1(k), but cannot use LR 1(k)

compression during analysis.

To conclude our discussion of the LL (k) and LR (k) variants, we observe the following:

Once an induces relation has been established through analysis of any of the LL or LR variants,

the linear approximation scheme may used to reduce decision state size. For all but the

exponentially-large, full LL (k) and LR (k) schemes, linear approximation can also be used to

reduce analysis time. More specifically, LALL 1(k), LL 1(k), SLR 1(k), LALR 1(k), and LR 1(k)

parsers are well-defined, but LL 1(k) and LR 1(k) lookahead set construction algorithms are not.

The LL 1(k) and LR 1(k)-based parsers are attractive due to their linear decision state com-

plexity, but are weaker than full LL (k) and LR (k). The next section generalizes lookahead deci-

sions to use anything from 1-tuple (set) to k-tuple comparisons.

7.6 LL m(k) and LR m(k)

The LL 1(k) and LR 1(k) variants have linear decision state complexity and, for all but full

LL 1(k) and LR 1(k), have linear grammar analysis complexity. Because of superior recognition

strength, LL (k) and LR (k) variants were also considered in previous sections. We showed how

the linear analysis could be used to reduce both grammar analysis time and parser decision state

complexity for these parsing strategies. LL 1(k) and LR 1(k) are, for this reason, extremely useful

grammar classes. However, some induces relations (decision states) cannot be mapped correctly

using the linear class and yield large ∆k sets using the hybrid linear/k-tuple mapping. This sec-

tion generalizes parsing decisions so that the class of induces relations, between the linear and k-

tuple mappings, can be described and decision state complexity can be reduced further.

Define an LL m(k) parser as a normal, top-down, LL parser whose most complex induces

relation has m-tuples as the largest atomic unit and looks no more than k terminals ahead for

m ≤k; LR m(k) parsers are defined similarly. LL k(k) and LR k(k) are, therefore, the familiar LL (k)

and LR (k). Contrary to the LL 1(k) and LR 1(k) variants, we do not define LL m(k) and LR m(k)

lookahead computations. These grammar class generalizations are intended to describe more pre-

cisely the complexity of an induces relation; hence, we limit our discussion to the mapping of

induces relations.



152

An example can best illustrate these generalized decisions; in the notation of [SiS90], C (k)

represents some class of deterministic parser that we augment to form C m(k), which represents

the same class, but with generalized decisions. We will start with the results of the C 3(3), or

C (3), analysis for some decision state and gradually reduce the space complexity of the mapping

using C m(3) techniques; see Table 7.9.

Table 7.9 C (3) induces Relation

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Lookahead (τ1 ,τ2 ,τ3) ∈ T 3 Action� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

(a,b,c) 1

(c,e,g) 1

(x,y,z) 1

(d,b,c) 2

(a,e,g) 2� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ����
��
��
��
�

���
��
��
��
�

���
��
��
��
�

For this discussion, will assume that a terminal resides in a full hardware storage word and that

terminal sets are encoded as bit sets requiring | T | /wordsize words (about a word in our exam-

ple). We discuss decision state space complexity because it is important in and of itself and time

complexity will generally depend on how much information must be searched to make a parser

transition. For example, to implement the C (3) mapping to action 1, three 3-tuples or 9 words

are required to store the lookahead information; for action 2, 6 words are needed, which yields a

total of 15. In an effort to reduce this complexity, we attempt the minimal, linear C 1(3) mapping

(which would yield 6 sets/words). The C 1(3) relation associated with Table 7.9 is shown in

Table 7.10.

Table 7.10 C 1(3) induces Relation

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Lookahead τ1 , τ2 , τ3 ∈ T,T,T Action� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

{a,c,x},{b,e,y},{c,g,z} 1

{a,d},{b,e},{c, f} 2� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ����
��
�

���
��
�

���
��
�

The C 1(3) relation is inconsistent because there is no lookahead depth that separates the actions.

However, this linear approximation can be used in conjunction the C (3) to form a hybrid

C 1(3)/C (3) mapping of the form:



153

τ1 ∈ {a,d} and τ2 ∈ {b,e} and τ3 ∈ {c, f} and (τ1 , τ2 , τ3) ∈/ (a,b,c) induces 2

τ1 ∈ {a,c,x} and τ2 ∈ {b,e,y} and τ3 ∈ {c,g,z} and (τ1 , τ2 , τ3) ∈/ (a,e,g) induces 1

Both induction expressions require 6 words for a total of 12 words. This hybrid approach

reduced the number of comparisons over the pure 3-tuple method from 15 to 12 words. More

compression can be done by considering C 2(3) information such as that presented in Table 7.11.

Table 7.11 C 2(3) induces Relation

�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Lookahead (τ1 ,τ3) ∈ T 2 Action�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

(a,c) 1

(c,g) 1

(x,z) 1

(d,c) 2

(a,g) 2�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ����
��
��
��
�

���
��
��
��
�

���
��
��
��
�

By ignoring the terminals appearing at lookahead depth two, the dimension of domain has been

reduced. A straightforward collection of 2-tuples yields 10 words — a reduction by 2 over the

hybrid C 1(3)/C (3) mapping. Linear compression, C 1(3) can be applied in this case as well to

further reduce the complexity. The C 1(3) information is given in Table 7.12.

Table 7.12 C 1(3) induces Relation for C 2(3) Information

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Lookahead τ1 , τ3 ∈ T,T Action� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

{a,c,x},{c,g,z} 1

{a,d},{c, f} 2� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ����
��
�

���
��
�

���
��
�

Notice, that the ‘‘3’’ in the C 1(3) notation is the maximum lookahead, not how many terminals

are examined. Again, the C 1(3) relation is inconsistent, but can be used in a hybrid C 1(3)/C 2(3)

mapping; i.e.

τ1 ∈ {a,d} and τ3 ∈ {c, f} and (τ1 , τ3) ∈/ (a,c) induces 2

τ1 ∈ {a,c,x} and τ3 ∈ {c,g,z} and (τ1 , τ3) ∈/ (a,g) induces 1



154

This mapping is the least complex at 8 words, using the straightforward tuple comparisons

method used here. To reiterate, C (3) information alone requires 15 words, but can be reduced to

12 using the C 1(3) information. The C 2(3) decision class allowed the complexity to be further

reduced to 8 words — a significant compression even for this small, contrived example.

Using an exhaustive search by terminal comparison approach, the time complexity for a

decision state will be the same as the space complexity. However, using a perfect hash function

approach, for example, the induces for full C (3) would only require a time complexity of 3 ter-

minal examinations (to compute the hash code from the key). However, nothing would have

been done to reduce the space complexity, which is an exponential function in k — here, it is

| T | 3 . As a C 2(3) mapping, time complexity would be 2 and space complexity would be reduced

to | T | 2 . This demonstrates that the C m(k) generalization can reduce the complexity of many

different decision types.

In this section, we generalized LL (k) and LR (k) parsers and parsing decisions to LL m(k)

and LR m(k), which characterize more precisely the complexity of inducing a parser action given

a lookahead string without regards for the parsing method. No new lookahead computations were

defined because these generalizations refer specifically to the implementation of induces relation

mappings. By modulating the values of m and k, the minimum complexity for an induces rela-

tion implementation can be found for a given decision type.

This chapter explored the variants of LL (k) and outlined how LR (k), and its variants, can

take advantage of the techniques emphasized in the previous chapters on SLL 1(k) and SLL (k).

We described LALL (k) lookahead information in detail and illustrated the difference between all

the LL (k) variants. The effect of linear compression upon SLR (k), LALR (k), and LR (k) parsers

and lookahead computations was outlined; the results are very similar to those of the LL variants

because, from a decision state implementation point of view, the differences between parsing

methods disappear. We observed that LOOKk
1 computations are valuable for all but the full

LL (k) and LR (k) strategies, but that the associated linear compression can be applied to any

induces relation (decision state). Hence, grammar analysis time can be reduced for the non-

exponentially large deterministic parsers, but can only reduce decision state complexity for the

exponential LL (k) and LR (k) schemes.

Further, in this chapter, we generalized these LL (k) and LR (k) parsers and parsing deci-

sions to LL m(k) and LR m(k), which provide a more accurate description of an induces relation

implementation complexity; specifically, m ≤k is the size of the largest tuple comparison and k is

the maximum lookahead depth. We demonstrated how various values of m can be employed to

significantly reduce parser decision complexity.



155

CHAPTER 8 CONCLUSION

Conventional deterministic parsing with lookahead depths greater than one is intractable

because lookahead information is potentially exponential; LL (k) and LR (k) parsers also have an

exponential number of states, but any of the weaker variants such as SLL (k), LALL (k), SLR (k),

and LALR (k) can be used to avoid this problem. Lookahead was previously employed in a

straightforward manner — each state transition was a function of the current parser state and the

next k terminals of input regardless of whether all k terminals were needed and whether looka-

head was needed at all. As a result, each input symbol was inspected exactly k times. The fact

that decisions rarely need all k symbols led us to the concept that a new type of parser, called an

optimal parser, could be constructed that inspected each input symbol at most once. Further, if

each symbol is to be examined at most once, the conventional lookahead atomic unit, the k-tuple,

must be dissolved into its constituent components: the individual terminals themselves. By vary-

ing the lookahead depth and by allowing non-k-tuple lookahead comparisons, we have removed

the two implicit assumptions that led most researchers to consider parsing, for k >1, impractical.

The most important contribution of this thesis is the compression of exponential lookahead

information to a practical size, which was made possible only by the dissolution of the atomic k-

tuple. While others have considered modulating k and examining terminals individually, their

parser lookahead decisions are still exponentially large for k >1. We introduced linear approxi-

mations to full lookahead decisions, called C 1(k), that use lookahead depths up to k, but consider

1-tuples (sets) the largest atomic unit; these decisions have lookahead of size O ( | T | × k) rather

than O ( | T | k). Moreover, these approximations are sufficient for most lookahead decisions; e.g.,

the empirical results of Section 5.11.2 indicate that SLL 1(k) covers about 75% of all SLL (k) deci-

sions for k >1. We generalized these approximations to C m(k), which consider the largest atomic

unit to be an m-tuple composed of terminals at contiguous and noncontiguous lookahead depths.

When C m(k) (for 1≤m ≤k −1) decisions are insufficient, C (k) decisions must be constructed. In

this case, full lookahead information also can be compressed heavily. By building hybrid

C 1(k)...C m(k)/C (k) decisions, the typical lookahead C (k) decision can be represented in a practi-

cal amount of space. C 1(k) lookahead information may be obtained by compressing the full loo-

kahead information or may be sometimes obtained by computing it directly from the grammar

(only full LL (k) and LR (k) cannot use this approach). To that end, we defined a compressed loo-

kahead computation, LOOKk
1 , and provided an efficient algorithm that has linear time and space

complexity for a fixed grammar — O ( | G | × k). Without C m(k) decisions, deterministic parsing

for k >1 would remain infeasible.



156

Because most work in parsing is theoretical for lookahead depths greater than one, few

practical algorithms and data structures existed. Consequently, in this thesis, we provided

efficient structures for representing grammars, lookahead, and parsers with heterogeneous states.

We introduced new algorithms for computing lookahead, testing for grammar properties, and

constructing parser lookahead decisions.

To summarize our approach, recall that we represent grammars as GLA’s, which realize a

covering, regular approximation to the underlying context-free language. The lookahead

sequences of depth k for a position in the grammar correspond to a subset of the sequences of

non-ε edges along the walks of length k starting from the associated GLA state. We store the

edges found along the walks of the GLA as child-sibling trees, but often view them as lookahead

DFA’s. Lookahead computations for any LL (k) or LR (k) variant are similar to NFA to DFA

conversions.

Unfortunately, obvious algorithms for computing lookahead from GLA’s have time and

space complexities that are exponential functions of k. We overcome this intractability in three

ways: First, the lookahead depth, k, is modulated according the actual requirements of the pars-

ing decision. Second, the linear approximation lookahead is used in place of the normal looka-

head when possible. Third, the results of lookahead computations are cached in order to avoid

redundant computations.

Although the various LL (k)- and LR (k)-based parsers need lookahead of different depths

for different grammars and grammar positions, lookahead decisions are identical in nature. Each

decision is a mapping from a domain of terminals or terminal sequences to a range of parser

actions. We abstract the notion of a lookahead decision to a relation called induces that describes

this mapping; thus, any transformation or implementation of an induces relation is equally valid

for any parsing strategy and isolates the computation of lookahead from the induction of parser

actions and the types of actions. Testing for parser determinism is accomplished by ensuring that

the induces relations in all parser states are deterministic.

While LL (k) and LR (k) parser construction is well understood from a theoretical stand-

point, little practical work has been done because the implementation of lookahead decisions was

previously considered intractable. We concentrated, therefore, on the implementation of parser

lookahead-decisions. While the worst-case decision size is proportional to the worst-case size of

the lookahead information, O ( | T | k), in general, much can be done to reduce this to a practical

size. As with lookahead computations themselves, we applied a hierarchical scheme: First, the

lookahead depth, k, is modulated to use minimum lookahead. Second, the linear approximation

lookahead is employed before full, exponential, k-tuple lookahead. Finally, when the linear

approximation is insufficient, a hybrid state composed of the linear approximation plus a set of

k-tuples is used. By constructing parsers that use different lookahead depths and comparison

structures, parsers with large lookahead buffers become practical. Again, this scheme is only

possible by constructing heterogeneous parsers. Chapters 3 and 4 provided a new perspective on

lookahead information, lookahead computations, and grammar analysis. Chapter 5 provided a



157

complete description of SLL 1(k) parsers while Chapter 6 considered full SLL (k) parsers. The

LL (k)- and LR (k)-based parsers were considered in Chapter 7.



158

LIST OF REFERENCES

[AhU72] A.V. Aho, J.D. Ullman, The Theory of Parsing, Translation and Compiling Volume

I, Prentice-Hall, 1972.

[AhU73] A.V. Aho and J.D. Ullman, ‘‘A technique for speeding up LR (k) Parsers,’’ SIAM J.

Computing, Vol. 2, No. 2, 1973, pp 106-127.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers Principles, Techniques, and Tools,

Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.

[ADG91] M. Ancona, G. Dodero, V. Gianuzzi, and M. Morgavi, ‘‘Efficient Construction of

LR (k) States and Tables,’’ ACM TOPLAS Vol. 13, No. 1, January 1991, pp 150-

178.

[BeS86] Manuel E. Bermudez and Karl M. Schimpf, ‘‘A Practical Arbitrary Look-ahead LR

Parsing Technique,’’ Proceedings of the 1986 Symposium on Compiler Construction

(SIGPLAN Notices V21, #7 July 1986), pp 136-144.

[BeS90] Manuel E. Bermudez and Karl M. Schimpf, ‘‘Practical Arbitrary Lookahead LR

Parsing,’’ Journal of Computer and System Sciences 41, 1990, pp 230-250.

[Bro74] B.M. Brosgol, ‘‘Deterministic Translation Grammars,’’ TR-3-74, Center for

Research in Computer Technology, Harvard University, 1974.

[CuC73] Karel Culik II, and Rina Cohen, ‘‘LR-Regular Grammars — an Extension of LR (k)

Grammars,’’ Journal of Computer and System Sciences 7, 1973, pp 66-96.

[DeM75] A.J. DeMers, ‘‘Elimination of Single Productions and Merging Nonterminal Sym-

bols of LR (1) grammars,’’ Computer Languages, Vol. 1, 1975, Pergamon Press,

Northern Ireland, pp 105-119.

[DeP82] Frank DeRemer and Thomas Pennello, ‘‘Efficient Computation of LALR(1) Look-

Ahead Sets,’’ ACM TOPLAS Vol. 4, No. 4, October 1982, pp 615-649.

[DeR69] Frank DeRemer, ‘‘Practical Translators for LR (k) Languages,’’ PhD Thesis, Depart-

ment of MIT, Cambridge Massachusetts, 1969.

[DeR71] Frank DeRemer, ‘‘Simple LR (k) Grammars,’’ Communications of the ACM, Vol.

14, No. 7, 1971, pp 453-460.



159

[Dob91] H. Dobler, ‘‘Top-Down Parsing in Coco-2,’’ ACM SIGPLAN Notices, Vol. 26, No.

3, March 1991.

[DoP90] H. Dobler and K. Pirklbauer, ‘‘Coco-2 A New Compiler Compiler,’’ ACM SIG-

PLAN Notices, Vol. 25, No. 5, May 1990.

[FiL88] Charles N. Fischer and Richard J. LeBlanc, Crafting a Compiler,

Benjamin/Cummings Publishing Company, 1988.

[Fri79] D. Friede, ‘‘Partitioned LL (k) Grammars,’’ Automata, Languages and Programming.

Lecture Notes in Computer Science 71, Springer Verlag, 1979, pp 245-255.

[Gre65] Greibach, ‘‘A New Normal Form Theorem for Context-Free Phrase Structure Gram-

mars,’’ Journal of ACM 12, 1965, pp 42-52.

[HSU75] Harry Hunt, Thomas Szymanski and Jeffrey D. Ullman, ‘‘On the Complexity of

LR (k) Testing,’’ Communications of ACM 18, 1975, pp 707-716.

[HuS78] Harry Hunt and Thomas Szymanski, ‘‘Lower Bounds and Reductions Between

Grammar Problems,’’ Journal of the ACM 25, No. 1 January 1978, pp 32-51.

[Ive86] Fred Ives, ‘‘Unifying View of Recent LALR(1) Lookahead Set Algorithms,’’

Proceedings of the 1986 Symposium on Compiler Construction (SIGPLAN Notices

V21, #7 July 1986), pp 131-135.

[Joh78] Stephen Johnson, ‘‘Yacc: Yet Another Compiler-Compiler,’’ Bell Laboratories,

Murray Hill, NJ, 1978.

[JoS75] Donald Johnson and Ravi Sethi, ‘‘Efficient Construction of LL(1) Parsers,’’ Pennsyl-

vania State University Computer Science TR 164, 1975.

[Knu65] Donald Knuth, ‘‘On the Translation of Languages from Left to Right,’’ Information

and Control 8, 1965, pp 607-639.

[Knu71] Donald Knuth, ‘‘Top-Down Syntax Analysis,’’ Acta Informatica 1, 79-110, 1971.

[KrM81] Bent Bruun Kristensen and Ole Lehrmann Madsen, ‘‘Methods for Computing

LALR (k) Lookahead,’’ ACM TOPLAS, Vol. 3, No. 1, January 1981, pp 60-82.

[LaL76] Wilf R. LaLonde, ‘‘On Directly Constructing LR (k) Parsers Without Chain Reduc-

tions, 3rd ACM Symposium on Principles of Programming Languages, 1976, pp

127-133.

[LeS68] P.M. Lewis II and R.E. Stearns, ‘‘Syntax-Directed Transduction,’’ Journal of the

ACM, Vol 15, No. 3, 1968, pp 465-488.

[PDC92] T.J. Parr, H.G. Dietz, and W.E. Cohen, ‘‘PCCTS Reference Manual Version 1.00,’’

ACM SIGPLAN Notices, February 1992.

[Pen86] Thomas Pennello, ‘‘Very Fast LR Parsing,’’ Proceedings of the 1986 Symposium on

Compiler Construction (SIGPLAN Notices V21, #7 July 1986), pp 145-151.



160

[Rob90] George H. Roberts, ‘‘From Recursive Ascent to Recursive Descent: Via Compiler

Optimizations,’’ SIGPLAN Notices, Vol. 25, No. 4, April 1990.

[RoS70] D.J. Rosendrantz and R.E. Stearns, ‘‘Properties of Deterministic Top-Down Gram-

mars,’’ Information and Control 17, 1970, pp 226-256.

[SiS82] Seppo Sippu and Eljas Soisalon-Soininen, ‘‘On LL(k) Parsing,’’ Journal of Informa-

tion and Control, Vol 53, 1982. pp 141-164.

[SiS83] Seppo Sippu and Eljas Soisalon-Soininen, ‘‘On the Complexity of LL(k) Testing,’’

Journal of Computer and System Sciences, Vol 26, 1983. pp 244-268.

[SiS88] S. Sippu and Eljas Soisalon-Soininen, ‘‘Parsing Theory Volumne I,’’ Springer Ver-

lag, Berlin, 1988.

[SiS90] S. Sippu and Eljas Soisalon-Soininen, ‘‘Parsing Theory Volumne II,’’ Springer Ver-

lag, Berlin, 1990.

[Ukk83] Esko Ukkonen, ‘‘Lower Bounds on the Size of Deterministic Parsers,’’ Journal of

Computer and System Sciences, Vol 26, 1983. pp 153-170.



161

APPENDIX

Sample Grammar Submissions From PCCTS Users

This appendix gives a description of the grammars submitted by users of PCCTS, the Purdue

Compiler-Construction Tool set, following a request for such. The grammars were stripped of

actions, converted to BNF notation. In addition, to protect the privacy of the original grammars,

the users converted all terminal and nonterminals to generic character strings. The grammars

were examined by the algorithms presented in this thesis.

[1] Prototype C compiler front end; Peter Dahl (dahl@everest.ee.umn.edu), HPC Graduate

Fellow, Army High Performance Computing Research Center.

[2] Command parser for a Nonlinear Finite Element Analysis Software; Tom Zougas

(zougas@me.utoronto.ca)

[3] Fortranp grammar — Serial to Parallel Fortran Translator; Matthew O’Keefe, Terence

Parr, B. Kevin Edgar, Steve Anderson, Paul Woodward, and Hank Dietz.

[4] ANSI C grammar distributed with PCCTS 1.06; Terence Parr (parrt@ecn.purdue.edu).

[5] Pascal Grammar distributed with PCCTS 1.06; Will Cohen (cohenw@ecn.purdue.edu)

and Terence Parr (parrt@ecn.purdue.edu).

[6] Advanced tutorial string C from PCCTS 1.06; Terence Parr (parrt@ecn.purdue.edu).

[7] ANTLR language description (antlr.g) PCCTS 1.06; Terence Parr

(parrt@ecn.purdue.edu).

[8] DLG language description (dlg_p.g) PCCTS 1.06; Will Cohen

(cohenw@ecn.purdue.edu).

[9] Front end to TROFF that makes it smell less bad; this thesis is written using it; Ter-

ence Parr (parrt@ecn.purdue.edu).

[10] Converts LISP tree notation to EQN/PIC graphics; Terence Parr

(parrt@ecn.purdue.edu).

[11] Converts an NFA description to PIC code; Terence Parr (parrt@ecn.purdue.edu).



162

[12] Accepts BNF and puts into data structure; Terence Parr (parrt@ecn.purdue.edu).

[13] EBNF->BNF converter; Terence Parr (parrt@ecn.purdue.edu).

[14] Compiler for a parallel programming (ELP); Mark Nichols, Gene Saghi, Dan Watson,

Mu-Cheng Wang, Robert Palmer, H.J. Siegel, and Hank Dietz.

[15] Grammar for a case tool language. Currently our case tool is lisp based with an

LALR parser. We have converted our grammar over to PCCTS; Frank Korzeniewski

(frkorze@pacbell.com).

[16] COBOL - WSL translator; Gareth L de C Morgan (g.l.morgan@durham.ac.uk), Univer-

sity of Durham.

[17] Grammar used for parsing small modula-2 subset (currently only brief expressions

and conditionals.); Tom Rushton (T.G.A.Rushton@durham.ac.uk).

[18] Grammar used for parsing large quantities of Modula-2. It won’t handle non-simple

types, and imported functions; Tom Rushton (T.G.A.Rushton@durham.ac.uk).

[19] Ada-like "Macro" student project grammar from "Crafting a Compiler in C" by

Fischer & LeBlanc, used for graduate level compiler writing course; Roy B. Levow

(roy@gemini.cse.fau.edu), Florida Atlantic University.

[20] Parses a wide range of SQL SELECT syntax; Fred Scholldorf

(scholldorf@nuclear.physics.sunysb.edu)

[21] MACRO Compiler, A project for Compiler Writing Class; Michael P. Vogt

(mike_vogt@vnet.ibm.com).

[22] Convert a Linear Programming problem description into Matrix-Vector form; Gaut-

ham Kudva (kudva@ecn.purdue.edu).



163

VITA

Terence John Parr was born in Los Angeles, California, USA in the year of the dragon on

August 17, 1964 during the week of the Tonkin Gulf Crisis, which eventually led us into the

Vietnam Conflict; coincidence? Terence’s main hobbies in California were drooling, covering

his body in mud, and screaming at the top of his lungs.

In 1970, Terence moved to Colorado Springs, Colorado with his family in search of better

mud and less smog. His formal education began in a Catholic grade school where he became

intimately familiar with penguins and other birds of prey. Terence eventually escaped private

school to attend public junior high only to return to the private sector — attending Fountain Val-

ley School for the ‘‘education’’ only a prep school can provide. After being turned down by

every college he applied to, Terence begged his way into Purdue University’s School of Humani-

ties. Much to the suprise of his high school’s faculty and the general populace, Terence gra-

duated in 1987 from Purdue with a bachelor’s degree in computer science.

After contemplating an existence where he had to get up and go to work, Terence quickly

applied to graduate school at Purdue University’s School of Electrical Engineering. By sheer

tenacity, he was accepted and then promptly ran off to Paris, France after only one semester of

graduate work. Terence returned to Purdue in the Fall of 1988, eventually finishing up his

master’s degree in May 1990 despite his best efforts. Hank Dietz served as major professor and

supervised Terence’s master’s thesis.

A short stint with the folks in blue suits during the summer of 1990, convinced Terence to

begin his Ph.D.; again, Hank Dietz was his advisor. He passed the Ph.D. qualifier exam in Janu-

ary of 1991, stunning the local academic community. After three years of course work, research,

and general fooling around, Terence finished writing his doctoral dissertation and defended it

against a small horde of professors and students on July 1, 1993.



LIST OF REFERENCES



APPENDIX



VITA


