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Abstract. Despite the sophistication of code-generator generators and source-to-source transla-
tor generators (such as attribute grammar based tools), programmers often choose to build tree
parsers by hand for source translation problems. In many cases, a programmer has a front-end
that constructs intermediate form trees and simply wants to traverse the trees and execute a
few actions. In this case, the optimal tree walks of code-generator generators and the powerful at-
tribute evaluation schemes of source-to-source translator systems are overkill; programmers would
rather avoid the overhead and complexity.

We introduce a freely available tool, SORCERER, that is more suitable for the class of transla-
tion problems lying between those solved by code-generator generators and by full source-to-source
translator generators. SORCERER generates simple, flexible, top-down, tree parsers that, in con-
trast to code-generators, may execute actions at any point during a tree walk. SORCERER accepts
extended BNF notation, allows predicates to direct the tree walk with semantic and syntactic con-
text information, and does not rely on any particular intermediate form, parser generator, or other
pre-existing application.

SORCERER was created to aid in the development of a large application [SOP93] that translates
scientific FORTRAN programs. It has also been used for a number of smaller translation problems.
For example, the trees depicted graphically in this paper were partially translated from terse,
textual descriptions to PostScript® by a small SORCERER application.

1 Introduction

The construction of computer language translators and compilers is generally broken down into separate
phases such as lexical analysis, syntactic analysis, and translation where the input to the translation
phase is an intermediate representation (IR) usually in the form of a set of trees. Many translators are
built by hand (in a top-down fashion) while others are described in the meta-language of a translator
generator system. It is ironic that most translator generators are compiler code-generator generators,
even though most translation problems do not involve compilation. Unfortunately, few practical tools
exist for the larger scope of source-to-source translation. UNIX utilities such as sed and awk provide
solutions for some translations, but are limited to matching regular expressions and only on a line-by-line
basis.

In this paper, we describe a new translation tool called SORCERER that is well suited to both small
and large problems. SORCERER differs from code-generator generators in that no “costs” or “weights”
are automatically associated with applying a production and, hence, optimal traversals are not the goal;
i.e., the tree grammar must be unambiguous and warnings are generated for nonconformant grammars.

A SORCERER description is essentially an unambiguous grammar (collection of rules) in Extended
BNT notation, that describes the structure and content of a user’s (IR) trees. The programmer anno-
tates the tree grammar with actions to effect a translation, manipulate a user-defined data structure,
or manipulate the IR itself. SORCERER generates a collection of simple and self-contained C or C++
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functions, one for each tree grammar rule, that recognizes IR subtrees and performs the programmer’s
actions in the specified sequence. For example, a SORCERER-generated tree recognizer may be embed-
ded in a programmer’s C or C++ file via EMACS [Sta86] by simply filtering a tree description through
SORCERER with the EMACS shell-command-on-region command.

Tree pattern matching is done efficiently in a top-down manner via an LL(1)-based* parsing strategy
augmented with syntactic predicates [PQ94] to resolve non-LL(1) constructs (with selective backtrack-
ing) and semantic predicates to specify any context-sensitive tree patterns. Tree traversal speed is
linear in the size of the IR unless a non-LL(1) construct is specified—in which case backtracking can
be employed selectively to recognize the construct while maintaining near-linear traversal speed.

We begin with a comparison of SORCERER to current translation tools.

2 Previous Work

The automatic translation of source programs has been approached from many different angles whether
the target be assembly code or another source language. Programmers have used a number of different
approaches including:

— hand-written translators.

— attribute grammar based translator generators [Knu68]; e.g., TXL [CC78], Cornell Program Syn-
thesizer [RTD83], Puma [Gro91], Eli [GHL*92], Ox [Bis92], and COCOL [RM89)].

— affix grammar based translator generators [Kos71]; e.g., EAG [Seu93].

A number of narrowly defined restructurers and translators have also been built:

— for FORTRAN (e.g., DELTA [Pad89], KAP and Parafrase [EB91]).
— for assembly code generation (e.g., TWIG [AGT89], IBURG [FHP92], BEG [ESL89], and GCC
(RTL) [Sta90]).

Ultimately, the true test of a language tool’s usefulness is provided by the vast industrial program-
mer community. Arguments concerning the relative strengths of unrestricted attribute grammars, affix
grammars, S-attributed, and L-attributed grammars [LRS74] are frequently irrelevant because most
programmers are not even familiar with the terms. Programmers want to use tools that are flexible,
that employ mechanisms they understand, and that generate output that is easily folded into their ap-
plication. They do not want to be forced into an environment with its own shell, esoteric programming
language, or unusual input description language. The resulting applications must also be standalone
(i.e., their customers must not be required to install the language tool environment). In such cases, the
cost of the tool and the cost per delivered application can be an issue.

As aresult, SORCERER uses a common description language, generates extremely simple standalone
translators in C or C4++ which can be debugged by standard source-level debuggers. SORCERER makes
only a single assumption about your application program—that the trees, with node type AST, be in
child-sibling form with the fields token, right, and down defined. Lastly, SORCERER is free; we only
request that users acknowledge us.

Most translation tools used in practice are code-generator generators, which solve a sufficiently differ-
ent problem from source-to-source translation that the use of different tools is warranted. For example,
while code-generator generators handle unambiguous grammar as well as ambiguous grammars, they
may not handle unambiguous grammars as efficiently as a tool specifically tuned for fast deterministic
parsing. Furthermore, code-generators cannot execute actions at any point during the recognition of a
production, typically allow only BNF constructs, and are not designed for input tree manipulations.

The available source-to-source translation systems have a number of limitations that we hope to
overcome with SORCERER. The existing tools are either specific to FORTRAN translation (e.g.,
DELTA), rely on tool-specific languages (e.g., TXL) or on uncommon languages such as Modula-2 (e.g.,
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COCOL, Puma)?, restrict placement of programmer-specified actions to after recognition of entire tree
patterns (e.g., Puma), require that their front-end be used (e.g., COCOL, Cornell Program Synthesizer,
EAG, Eli, Ox, Puma, TXL), or are difficult to merge with existing applications (e.g., Eli, Cornell
Program Synthesizer, TXL). While all of these attribute grammar based tools are useful (some are
extremely good at prototyping translators), their practicality has not been adequately established with
large industrial bases.

SORCERER can be considered an extension to an existing language rather than a total replace-
ment as other tools aspire to be. Consequently, programmers can use SORCERER to perform the well
understood, tedious, problem of parsing trees, while not limiting themselves to describing the intended
translation problem purely as attribute manipulations. SORCERER does not force the user to use any
particular parser generator or intermediate representation. Its application interface is extremely simple
and can be linked with almost any application that constructs and manipulates trees.

3 SORCERER as a Programming Language Extension

SORCERER’s main strength is that it represents simply a shorthand notation for what programmers
typically write by hand. This not only makes SORCERER a simple tool to implement and to understand,
but it does not artificially introduce limitations on the programmer. Imagine that you have been given
the simple task of translating C language assignments, which have been stored in an IR of the form
depicted in Figure 1, to Pascal. Figure 2 provides a function that accepts a tree of this form and
prints out the assignment with the Pascal “:=” assignment operator (assuming that function expr
exists elsewhere and prints out an expression in Pascal notation). The exact same functionality may
be achieved with a SORCERER description as shown in Figure 3. The SORCERER tree description
notation is the same as LISP child-sibling notation with the exception that trees are prefixed with “#” to
distinguish them from the Extended BNF grouping symbols “(...)”. Actions are enclosed in European
quotes <<...>> terminals begin with upper-case letters, and rules (nonterminals) begin with lower-case
letters. The rule definition syntax itself is similar to YACC and consistent with ANTLR [PDC92].

| Child-sibling notation | Graphical form |
ASSIGN
( ASSIGN lhs rhs) lhs —» rhs
ASSIGN

l

ID — PLUS

|

( ASSIGN ID (PLUS FLOAT ID)) FLOAT —» ID

Fig. 1. IR Form for C Assignments

This example illustrates an important feature of SORCERER descriptions—action placement is
significant whereas code-generator generators typically have a single action that emits assembly code
after the tree pattern is matched. Actions are executed after the recognition of the elements to the
left and before the recognition of elements to the right. For example, placing the printf action at the
end of the assign rule would produce incorrect results as it would print the assignment operator after
the right-hand-side expression had been printed. Programming languages without an explicit execution
order, such as Prolog, are often excellent vehicles for describing problems, but result in programs that
are notoriously difficult to debug. Hence, we have chosen to support an implied execution order for

SORCERER descriptions.
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assign(AST *t)

{

if ( t->token==ASSIGN ) {
expr (t->down) ;
printf (" = ");
expr (t->down->right) ;

}

else error;

}
Fig. 2. Partial C Code to Translate C Assignments

assign :  #( ASSIGN expr <<printf(" := ");>> expr )

Fig. 3. Partial SORCERER Description to Translate C Assignments

4 SORCERER Description Language

Just as YACC and ANTLR grammars specify a sequence of actions to perform for a given input
sentence, SORCERER descriptions specify a sequence of actions to perform for a given input tree. The
only difference between a conventional language parser and a tree parser is that tree parsers have to
recognize tree structure as well as grammatical structure. For this reason, the only significant difference
between ANTLR input and SORCERER input is that SORCERER grammar productions can use an
additional grouping construct—a construct to identify the elements and structure of a tree. In this
section, we summarize the most important portions of SORCERER, syntax.

4.1 Rule and Element Syntax

A SORCERER description is a collection of rules in Extended BNF (EBNF) form and user-defined
actions preceded by a header action where the programmer defines the type of a SORCERER tree:

ttheader << header action>>
actions

rules

actions

where actions are enclosed in European quotes <<...>> and rules are defined as follows:

rule : alternative;
| alternatives

| alternative,

’

Each alternative production is composed of a list of elements where an element can be one of the items
in Figure 4. The “...” within the grouping constructs can themselves be lists of alternatives or items
from Figure 4. Tree patterns are specified in a LISP-like notation of the form:

#( root-item item ... item )

where the # distinguishes a parenthesized expression from the EBNF grouping construct and root-item
is a leaf node identifier such as ID. Flat trees (lists of items without parents) are of the form:

item ... item

SORCERER-generated translators can use either user-defined token types or can have SORCERER
assign token types to each terminal referenced in the grammar description.



| Item | Description | Example

leaf token type 1D
wild card #( FUNC ID (.)* )

rule-name| reference to another rule expr

#(...) tree pattern #(IF expr slist slist)
<<...>> |user-defined semantic action <<printf("%s'", t->name);>>

C...) subrule ("int" | ID | storageclass)

(...)%* closure ID ("," ID)=*

(...0)+ positive closure slist : ( stat | SEMICOLON )+ ;

{...} optional { ELSE stat }
<. .57 semantic predicate id : <<is_TYPE(str)>>?7 ID ;

(...)7 syntactic predicate ((1list EQ)? list EQ list | list)

Fig.4. SORCERER Description Elements

4.2 Translation Support

Once the structure of the IR has been described using the notation given in the previous section, actions
must be embedded to specify a translation. Actions have access to IR subtrees via node labels and may
communicate with other rules via rule parameters and return values analogous to C function parameters
and return values; each rule has an implicit parameter root which is the subtree to be matched.

Rule elements can be labeled with an identifier, which is automatically defined as an IR tree node
pointer, that can be referenced by user actions. The syntax is:

t: element

where ¢ may be any upper or lower case identifier and element is either a token reference, rule reference,
or the wild-card. Subtrees may be labeled by labeling the root node. The following grammar fragment
illustrates a typical use of an element labels.

a : #( DO u:ID expr expr #( v:SLIST (stat)* ) )
<<printf("induction var is %s\n", u->symbol); analyze_code(v);>>

where symbol is some field that the user has defined as part of an AST. These labels are pointers to
the nodes associated with the referenced element and are only available after the recognition of the
associated tree element.
Actions within a rule access trees via labels and communicate via local variables. A special action
called an init-action can be specified at the start of any alternative of a rule or subrule. For example,
/* match a function call with arbitrary number of arguments */
fc <<int i=0;>>
#( FUNC ID ( . <<i++;>> )* )
<<printf("found func call with %d arguments\n", i);>>

3

Actions may communicate across rules via rule parameters and return values. For example, it is
often desirable to pass a value to an expression rule indicating whether it is on the left or right hand
side of an assignment:

<<enum SIDE { LHS, RHS };>>

stat:  #( ASSIGN expr[LHS] expr[RHS] )

I

expr[int side] : ... ;

Alternatively, one can pass information between rules as return values. The following example demon-
strates how the number of arguments in a function call could be returned and placed into a local variable



of the invoking rule.
expr: ID
|  FLOAT
| <<int n;>>
fc > [n]
<<printf("func call has %d arguments\n", n);>>

3

fc > [int nargs]
<<int i=0;>>
#( FUNC ID ( . <<i++;>> )* )
<<nargs = i;>>

4.3 Semantic Predicates

Most source-to-source tree grammars are unambiguous because, unlike code generation, source con-
structs normally have a single translation in the target language. However, this is not exclusively the
case and it is often desirable to specify context-sensitive structures. Many syntactic ambiguities can
be resolved and many context-sensitive structures can be expressed easily with semantic predicates
([PQY4], [PCDI3]). Semantic predicates are user-defined expressions, which evaluate to true or false,
that indicate the semantic validity of attempting to match a tree. For example, consider how one would
disable certain expression elements when matching the left hand side of an assignment. The following
fragment demonstrates how predicates can be used to turn certain alternatives on and off depending
on the context.
<<enum SIDE { LHS, RHS };>>
stat:  #( ASSIGN expr[LHS] expr[RHS] )
I
expr[int side]
<<gide!=LHS>>?7 INT <Laction;>>
| ID <Lactiony>>

H

The SORCERER-generated code to recognize rule expr simply incorporates the predicate in the pre-
diction of the first alternative; i.e., the prediction expression would be:

( t!'=NULL &% t->token==INT && side!=LHS )

Semantic predicates may also examine the structure or contents of a tree before recognition is
attempted by referencing the subtree root, passed implicitly to every rule, called root. Figure 5 demon-
strates how a predicate can be used to distinguish between the unary and binary operator Minus.
Because both alternatives begin with a common left-prefix (i.e., Minus), SORCERER cannot determine
from the root of the tree what follows the Minus (how many operands the operator has) with a single
symbol of lookahead. The semantic predicate enables rule expr to distinguish between the productions.

expr: <<root->down!=NULL && root->down->right !=NULL>>?
#( Minus expr expr ) // Binary: subtract
| #( Minus expr ) // Unary: negate

Fig. 5. Semantic Predicate Used to Isolate Unary Operator



4.4 Syntactic Predicates

Occasionally a programmer is faced with a grammatical construct that cannot be recognized using SOR-
CERER’s deterministic LL(1)-based approach. Consequently, SORCERER supports the specification
of semantic and syntactic predicates ([PQ94], [PCD93]) to indicate the semantic and syntactic validity
of attempting to match a particular rule alternative, respectively. Figure 5 used a semantic predicate
to test the structure of the current input subtree. While this is effective, the semantic predicate is
not using semantics (e.g., symbol table information) to resolve the parsing nondeterminism. Syntactic
predicates provide a more convenient means of indicating that a particular tree structure is necessary
for successful recognition. A more natural way to describe rule expr in Figure 5 would be as depicted
in Figure 6. The syntactic predicates indicates that to successfully match the binary version of Minus,
the current subtree must have Minus at the root and have two children.

expr: ( #(Minus . .) )? #( Minus expr expr )
I #( Minus expr )

Fig. 6. Syntactic Predicate Used to Isolate Unary Operator

4.5 Example

In order to illustrate the notation provided in the previous sections, a useful, but small example is
presented in this section. We have chosen to describe an interpreter such as one might construct for a
small, application-specific language; while it could just as easily have been constructed in C or Pascal, the
example illustrates a complete SORCERER description. Consider a trivial LISP-like language which
allows the definition of new functions, the application of functions, and the setting of symbols to
particular values; the only predefined function is “+”. Figure 7 a simple program that computes the
value 45 and Figure 8 gives a SORCERER program that will interpret trees of the given form; for
clarity and brevity, we have substituted algorithmic code in italics for the actual C++ actions.

The nodes in the IR tree represent the token type stored in field token of AST. Other information
is stored in an AST node such as the text of the identifier, id, but SORCERER-generated translators
use only the structure of the tree and the value in token to match IR patterns; fields right and down
are used to navigate the IR.

5 Conclusions

SORCERER was developed out of frustration while trying to solve “real-world” translation problems in
the realm of parallel supercomputing. It has since proven valuable for a wide range of smaller problems
as well. SORCERER’s strength lies primarily in its flexibility and simplicity; because of the tremendous
success of ANTLR in the programmer community (well over 1000 registered users in 37 countries),
a number of ANTLR features were carried over to SORCERER. Programmers may view translation
descriptions as tree-pattern recognition extensions to C or C4++4. SORCERER-generator translators
may be used alone or by folding them into existing applications. SORCERER may be obtained via
anonymous ftp at marvin.ecn.purdue.edu in pub/pccts/sorcerer.
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Sample Program | Tree Structure

DEFUN
ID—> ID — PLUS
(defun £ (x) (+ 3)) l
ID
SETQ
(setq y 42) i
ID — INT

ID

(£ y) i

ID

Fig. 7. Sample Program in LISP-Like Language With IR Structure
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#header <<

#define _PARSER_VARS char *id; int ival; STree *args, #*code;

#include "mytokens.h" // definition of token types; i.e. ID, PLUS,
>>

<<
main()
{
STreeParser p;
AST *result;
STreeParserInit (&p);
/* a simple ANTLR grammar embodied make-1R-tree-for() in actual test */
staty = make-IR-tree-for("(defun £ (x) (+ 3))");
statas = make-1R-tree-for("(setq y 42)");
stats = make-IR-tree-for("(£f y)");
sexpr(&p, &stati); sexpr(&p, &statz); result = sexpr(&p, &stats);

}

>>

sexpr > [AST *result]
: <<AST *arg>>
#( SETQ t:ID sexpr > [arg]l )
<< add t->id to symbol table as 1ID and set its value to arg; result = t;>>

| /* Don’t eval args or code block; hence, we use a wild-card rather than ref to sexpr */
#( DEFUN t:ID args:. code:. )
<< add t=>id to symbol table as DEFUN;>>
<< add args and code of func to sym entry; result = t;>>

I <<AST *opl,*op2;>>
#( PLUS sexpr > [opl] sexpr > [op2] )
<<result = make-node-out-of-token-and-value (INT, opl->ival + op2->ival);>>

| <<AST *arg, *fval;>>

<<isfunc(root->id)>>7 /* is ID a function (DEFUN)? %/

#( ID
<< create a new temporary scope;>>
<< add arg names of function to symbol table;>>
( sexpr > [argl << set arg name of function to evaluated tree: arg;>>
) *
<<fval = sexpr( ptr_to_code_of _function) ;>>
<< remove all function arg names by removing temporary scope;>>
<< switch to previous scope;>>

)

<< return fval;>>

| t:ID <<result = ival of symbol table entry of t->id;>>

| t:INT <<result

t;>>

H

Fig. 8. SORCERER Interpreter For LISP-Like Language
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