
DO NOT DISTRIBUTE! Copyright 1999 Terence Parr

1

Language

A language is simply a set of valid sentences, or "what you can say". The concept of language
presents two main problems: generation and recognition. This book is concerned with the latter,
but to firmly understand the recognition of languages you need to understand generation as well.
This chapter…

###Communication is not the exclusive domain of Man. Ants communicate with chemicals,
birds define their domain with song, felines with scent, prairie dogs with calls, nerds with … ;)
However, discounting the single-utterance grunts and calls, Man alone appears to possess the
ability to communicate ideas through language [although after Douglas Adams' book I'm not so
sure about the rats where we were all actually rats in their experiment…ultimate computing
device or something???].

###How is it that a stream of grunts then can transmit information beyond lists of things? I.e.,
about time and space and that great turkey sandwich I just enjoyed?

###Humans are hardwired for grammar and speech. Who can forget the ease with which children
pick up another language? All humans have speech and never simple caveman speech. In
footnote, for a great debunking of the 200 words for snow in Eskimo language, see Pinker.

###something about how language changes over time.

###evolutionary pressure for language? Better able to pass on learned knowledge, making your
offspring more robust. Chimps can show kids but can't write it down or tell them about it.
Demonstration is required. Think about how a simple sentence can give you crucial information:
friction gives off heat; e.g., rubbing two sticks together can make wood smoke.

###Who cares about grammars and machines and languages?

The Nature of Language

Cannot understand recognition until you understand the nature of languages; how they project
meaning.

First show how to generate (finite) language, then infinite, then with some validity (probabilities),
then show memory/dependencies "[…]", and finally ORDER requirements (nested […]).

Language Generation and Finite State Machines

Steven Pinker in his excellent book, The Language Instinct1, provides a great example of a
sentence generator: telephone directory assistance. You can build a simple, but unnatural
sounding phone number voice synthesizer by recording a human saying each of the ten digits 0..9.
To speak any telephone number, you pick the right recording at the right digit position. For
example, to say 555-1212, your program would say the recording for "five" three times then

1 HarperPerennial, 1994. Pinker’s book has greatly influenced my thinking about languages and structure.
My understanding of how humans generate language is rooted in his work. The state diagrams shown in
this section are inspired by the machines in The Language Instinct.

DO NOT DISTRIBUTE! Copyright 1999 Terence Parr

2

"one", then "two", etc… This problem screams for a state machine solution like the following
machine with seven states:

This machine defines a large, but finite set of sentences because there are exactly 7^10 possible
combinations of digits.

Most languages are not finite, however. When I was a suffering undergraduate student at Purdue
University (back before GUIs), I ran across a sophisticated sentence generator, a "documentation
generator", that automatically produced verbose formal manuals. You could read about half a
paragraph before your mind said, "Whoa! That doesn't make sense." Still it was amazing that a
program could produce a document that, at first glance, was human-generated or at least written
by a manager masquerading as a coder. How can a program generate English sentences? Such a
program would also use some form of state machine, but with more states and more choices per
state than the telephone number voice synthesizer. For example, here is a partial state machine
for picking Blues song lyrics:

The set of sentences generated by this state machine is not finite because you can always follow
the loop around "really" an infinite number of times. The notion that you can generate an infinite
language with a finite generator or description is a crucial concept that you will see again.

This state machine can produce lyrics such as "My dog is really lazy" and "You was gone", but
also bogus statements such as "My Brother are dead"2. Rather than choose words at random at
each state, the machine can use known probabilities for how often certain words follow each
other. That scheme helps, but no matter how good your statistics are, the machine will eventually
generate an invalid sentence. Surely this is a poor cousin to the mechanism used in the human
mind for language generation.

Consider language generation from the perspective of the
adventurer in the maze ### whereas the last chapter
discussed the maze metaphor from the recognition point-of-
view. The language defined by the maze is the set of all
passphrases and, hence, you can generate all possible
sentences by walking every possible path from the entrance

2 What happens if you run this Blues lyrics machine backwards? The old joke says, "you get your dog
back, your wife back, …"

DO NOT DISTRIBUTE! Copyright 1999 Terence Parr

3

to the exit.

Imagine that at least one loopback exists in paths of the
maze. You could walk around forever, making an
infinitely-long passphrase. The maze can therefore
simulate a finite or infinite language generator and is a
metaphor for a state machine.

Think about why state machines can generate invalid sentences. There are three reasons3:

1. Grammatical does not imply sensible (and vice versa). For example, "cows flow supremely"
is grammatically okay, but makes no sense. In English, this is self-evident. On the other
hand, rock-n-roll lyrics and poetry, when read literally, often make no sense. In a computer
program, you also know that a syntactically valid assignment such as
"employeeName=milesPerGallon;" can make no sense depending on what your program
is meant to do. Unless a human is doing the generation or recognition, nonsensical sentences
are an issue (at least until Isaac Asimov’s vision of robotics becomes a reality).

2. There are dependencies between the words of a sentence. If confronted with a ’]’ (close
square bracket), there is not a programmer in the World that would not have an involuntary
response to look for the opening ’[’. ###add knock knock joke? You could design a state
machine that had paths to generate one pair of brackets, two pair of brackets, three pair of
brackets ad naseum, but such a machine would be infinitely large. Here is a machine that
generates from one to three brackets around an integer.

3. There are order requirements between the words of a sentence. When a program has an array
reference nested inside a parenthesized expression, you expect the closing square bracket and
parenthesis to be in a particular order in relation to each other as opposed to the opening
bracket or parenthesis, which the previous rule dictates. For example, you immediately see
"(a[i+3)]" as invalid. A state machine has no way to encode or remember what order it saw
previous symbols.

In order to design a machine capable of solving problems 2 and 3, think about the difference
between a list of words ala the state machines and what really dictates the validity of sentences.
The key idea is that a sentence is not a cleverly combined sequence of words, but rather groups of
words and groups of groups. In other words, sentences have structure like this book. This book
is organized into a series of chapters each containing sections, which themselves contain
subsections and so on. Nested structures abound in computer science too. For example, in an
object-oriented class library, classes group all elements beneath them in the hierarchy into a
categories (any kind of cat might be a subclass of Feline etc…). The first hint of a solution to our

3 The Language Instinct, pp 93-97. I use Pinker’s reasons, but in a computer language context.

DO NOT DISTRIBUTE! Copyright 1999 Terence Parr

4

underpowered state machines is now apparent. Just as a class library is not a flat list of classes, a
sentence is not just a flat list of words.

Language Generation and Pushdown Machines

The structure of Human and most computer language sentence structure is described by a tree, a
two-dimensional framework with words at the leaves and grouping nodes as subtree roots. For
example, the assignment "a=b;" can be represented by the following tree.

The non-leaf nodes, "statement" and "assignment", encode the underlying structure of the four
symbols ’a’, ’=’, ’b’, and ’;’.4

In your head, language generation does not begin with the first word of a sentence. You generate
language at an abstract level and work your way down, albeit very quickly. When you write
code, you do not think like a state machine: "I need a variable then an equals etc…". You think:
"I need to assign 'b' to 'a'". Then you worry about the details of the assignment. This smacks of
the top-down recognizers from the previous chapter.

So walking the states of a state machine is too simple an approach for the generation of complex
language. There are word dependencies and order requirements among the output words that it
cannot satisfy, as the state machine has no memory of what it generated in the past. To design a
machine that generates language by structure rather than word sequence, you need a memory
system that can pair up dependent words and can enforce nested structure.

It turns out that the humble stack is the perfect memory structure to solve both word dependency
and order problems, which is great because modern computers5 have hardware stacks. Yep,
adding a method call and return scheme to the state machine turns it into a sophisticated language
generator. You call such a device a pushdown machine.

4 You might recall being tortured in elementary school by so-called "sentence diagramming" exercises
where you had to figure out how the words modified each other. Sentence structure trees are akin to these
"fishbone" diagrams. I say "elementary school" rather than "grammar school", as Americans often refer to
that early period of bondage, to avoid any confusion that Americans were learning grammatical structure in
school. I dare say that we learn about grammars only when studying a foreign language later in life.

5 The idea of pushing the return address onto a stack before branching to implement a function call (so that
you can continue where you left off upon return) is so commonplace now that we forget that many
computers in the 1960s did not have a hardware stack. For example, the Control Data Corporation’s 6000
series computers did not have a stack (60 bit words, ones-complement arithmetic versus twos-complement,
one (non-floating) instruction called "set", etc… These were Seymour Cray's early babies if memory
serves me correctly). You could store a single return address in the first word of the invoked function,
which the compiler left open for you. Fortran in those days could not do recursion. As my friend Gary
Funck says, "if you're young enough that you do not remember CDC, then good for you."

DO NOT DISTRIBUTE! Copyright 1999 Terence Parr

5

Solving Word Dependencies

A simple pushdown statement generator demonstrates how a stack lets you enforce word
dependencies. Consider a language with method call statements, return statements, and integers
for expressions. The appearance of a closing parenthesis depends on the existence of a previous,
opening parenthesis. The state machine component of the pushdown machine is a good place to
start:

You can generate "foo(34);", "blort(193);", and "return 9;". Unfortunately, you can
also generate the invalid sentences "foo(1;" and "return 5);". The problem is that the digit
loop state cannot remember whether the method call or return statement transitioned to it, hence,
it does not know to which of the emanating states to jump. The machine cannot encode the
dependency between the opening and closing parenthesis.

Adding a stack allows you to store a "return address", which lets you partition a state machine
into smaller machines invoked like normal procedures. Splitting off the digit loop state and
labeling the two submachines results in the following pushdown machine:

To distinguish between nodes that generate a word directly and invocations of submachines, use
rectangular states for generators and oval states for submachine invocation states. Pushdown
machines specified graphically in this manner are called syntax diagrams. The labels of the
submachines correspond to the grouping constructs found in a sentence’s tree structure
representation. The sentence structure of "return 9;" in tree form looks like:

A sentence’s tree structure, which you will later call a derivation tree or parse tree, is a record of
how a particular pushdown machine generated that sentence. The easiest way to think about
these trees is that they are a record of the call sequence among the submachines. In this case,

DO NOT DISTRIBUTE! Copyright 1999 Terence Parr

6

submachine "statement" generated "return" then called submachine "expression" to generate
"9" and then "statement" generated the ";".

If you wanted to, you could build such generator with Java methods as follows.

void statement() {
 System.out.println("return");
 expression();
 System.out.println(";");
}
void expression() {
 // generate a sequence of digits
 while (some-condition) {
 System.out.print(some-digit);
 }
}

The call tree for generating "return 9;" corresponds one-to-one to the generated sentence
structure tree.

Solving Word Order Requirements

A language with word order requirements normally has nested substructures. Reconsider the
problem of pairing up square brackets and parentheses in the right order. For example, you must
close a bracketed subexpression before closing an outer parenthesized expression such as
"(a[34])". Here is a pushdown machine that generates "(a[34])" as well as others.

This expression generator can generate expressions like "29342", "a[12]", "(89)", "a[(1)]",
and "(a[a[1]])". The order of word generation within any submachine is guaranteed even if it
invokes another submachine (or itself in this case).6 For the second alternative,
"a[expression]", the ’]’ is guaranteed to occur after the index expression. Any structure
generated by the index expression will terminate before the ’]’. Similarly, the third alternative
guarantees that the ’)’ will occur after the structure generated by the enclosed expression. That is,
the machine ensures that grouping symbols are appropriately nested. Improper nesting is
abhorrent to most minds; imagine the start of a chapter before the end of its preceding chapter.

To summarize, sentences are not cleverly chosen lists of words, but groups of words and groups
of groups structured as a tree with the words at the leaves and group names as subtree roots. A
finite state machine can generate simple finite or infinite sentences adequately like the directory
assistance synthesizer, but state machines cannot generate sentences that have word dependencies

6 Do not let the recursion scare you. Languages are naturally highly recursive beasts. As L. Peter Deutsch
said, "To iterate is human, to recurse divine." I see another play on the same phrase in people’s email
signature: "To error is human, to moo bovine."

DO NOT DISTRIBUTE! Copyright 1999 Terence Parr

7

or nested substructures like word order requirements. A pushdown machine is a state machine
augmented with a stack that allows you to break up the machine into labeled procedure-like
submachines and makes a pushdown machine much more powerful than a state machine. A
sentence’s tree structure is a record of the submachine invocations used to generate that sentence.

Ambiguous Language Generators (###Language or Generator?)

The Language Instinct cites a marvelously ambiguous statement by Groucho Marx: "I once shot
an elephant in my pajamas. How he got into my pajamas I’ll never know." As the reader, you can
decide that either Groucho shot an elephant sporting (and presumably stretching) his pajamas or
Groucho was wearing his pajamas and the elephant happened to be lurking inside the same
pajamas.

Ambiguity is a source of humor in English, but the bane of computing. Computers must always
know exactly how to interpret every statement or, at the lowest level, computers must always
make decisions deterministically—they must know exactly which path to take. A classic example
of an ambiguous statement relates to the generation of expressions containing operators. The
expression 3+4*5 is not ambiguous to an adult human. It means multiply four times five and add
three yielding 23. An elementary school student doing the operations from left to right might ask,
"Why is the result not 35?" Indeed, why not? Because mathematicians have decreed it so. In
fact, German mathematician Leopold Kronecker went so far as to say, "God made the natural
numbers; all else is the work of man." The following pushdown machine generates expressions
with operators plus and multiply.

###some languages are inherently ambiguous.

###is left-recursive stuff really easy to understand?

An adult generates 3+4*5 by recursively calling submachine expr until they arrive at the
following interpretation of the inherent structure:

The elementary school child would ask why you do not generate 3+4*5 with the following
structure, grouping the 3 and 4 together instead of the 4 and 5.

DO NOT DISTRIBUTE! Copyright 1999 Terence Parr

8

A machine, state or pushdown, that can generate a sentence in more than one way is an
ambiguous language generator because it can mean two different things when generating the
same sentence. In other words, if a machine can yield more than one tree structure for a given
sentence, that machine is ambiguous as the sentence structure is ambiguous. Ambiguity is a
problem because structure is the basis of meaning and leads to problems regardless of whether
you are generating or recognizing sentences.

Grammars

A language can be an infinitely large set of sentences, making it impossible to define languages
by simply delineating the sentences. As you saw above, finite state machines and finite
pushdown machines can generate infinite sets of sentences and, in fact, are a way of formally
defining a language. By walking all possible paths of a machine, you generate all possible
sentences in the machine’s language.

Machine diagrams are easy to understand due to their visual nature, but diagrams are tiresome to
build and very hard for a computer to understand. Further, diagrams are almost free form in that
two people could build two different diagrams for the same machine design. We need a better
means of formally describing languages.

Abstacting Structure From Exemplars

Before blurting out the answer to our language definition woes, see if you can analyze a few
English sentences to abstract their underlying structure. Proficiency at determining language
structure from representative sentences must become second nature to you. Look at the following
exemplar sentences that define a subset of English.

John gesticulates
John gesticulates vigorously
The dog ate steak
The dog ate ravenously

The sentences have meaning to you because your brain is subconsciously associating concepts
with the words and structuring the words into phrases and groups of phrases, which conveys
meaning. Try to do this consciously by abstracting structure from these exemplars. There is
always a person or thing (a subject) and a verb describing an action (a verb phrase) and
sometimes an object that the subject acts upon. Replace the phrases in the sentences of similar
structure with a symbol representing that structure. First, abstract all the subjects:

Subject gesticulates
Subject gesticulates vigorously
Subject ate steak
Subject ate ravenously

Next, abstract the verb phrases:

DO NOT DISTRIBUTE! Copyright 1999 Terence Parr

9

Subject VerbPhrase
Subject VerbPhrase
Subject VerbPhrase steak
Subject VerbPhrase

Finally, abstract the objects:

Subject VerbPhrase
Subject VerbPhrase
Subject VerbPhrase Object
Subject VerbPhrase

Removing duplicate abstract sentences leaves only two types of sentences and reveals the overall
structure of a sentence:

Subject VerbPhrase
Subject VerbPhrase Object

Turning to the substructures, the subject phrases:

John
The dog

are further structured as:

Noun
Determiner Noun

The verb phrases:

gesticulates
gesticulates vigorously
ate
ate ravenously

are structured as:

Verb
Verb Adverb

You can summarize the finite language defined by the exemplars with the following set of syntax
rules, or grammar.

1. A sentence is a subject followed by a verb phrase optionally followed by an object.

2. A subject is a noun optionally preceded by a determiner.

3. A verb phrase is a verb optionally followed by an adverb.

4. A noun is John or dog.

5. A verb is gesticulates or ate.

6. An adverb is vigorously or ravenously.

7. An object is steak.

8. A determiner is The.

The structure of these rules is right, given our intuitive understanding of English, but the rules are
actually too loose because they generate more than the four sentences in our language. For
example, the rules let you say, "dog gesticulates ravenously". You will encounter this

DO NOT DISTRIBUTE! Copyright 1999 Terence Parr

10

situation frequently as you build grammars. There is usually a tradeoff between writing a natural
description and achieving strict conformance.

Syntax Versus Semantics

The fact that these rules for a subset of English are loose also highlights that a language can be
hard to describe with a series of simple syntactic rules. There are semantic rules (rules about
which sentences are meaningful) in addition to the syntactic rules (rules in the grammar). The
rules above are strictly syntactic and, at least for computer languages, are the easiest to specify.

To see the difference between syntactic and semantic rules, reconsider the arithmetic expressions
and the associated ambiguous machine generator described above. You can specify the same
language as the pushdown machine with the following recursive rule.

1. An expression is an integer or two smaller expressions separated by a ’+’ or two expressions
separated by a ’*’.

The machine and equivalent rule are ambiguous because they are not complete specifications for
the arithmetic language understood by human adults. Given another rule, a semantic rule, your
specification becomes unambiguous:

2. Operator ’*’ has higher precedence than operator ’+’.

This rule, decreed by mathematicians, forces a unique tree structure for any given expression (the
’*’ operator binds more tightly than ’+’). The problem with this rule, and the reason the pushdown
machine did not encode this rule, is that encoding semantics rules is often hard or expensive for a
computer. ### Ref to sem preds and context-free sections?

Human language has so many special cases and semantic rules that defining a precise grammar is
almost impossible. ###Esperanto. I once saw a book on English grammar (###lookup at
amazon?) that was about 4 inches thick. Besides English is a moving target as is any human
language currently in use. Consider the difference between Elizabethan English and Modern
English.

###sometimes you can get the semantics right via syntax (normally requiring non-CFG), but
expression thing can be rewritten.

Bear in mind as you discover meta-languages in the next section that there is sometimes a gap
between the language you mean and the language you can specify easily.

Language Definition Meta-Languages

There is another problem with the rules as described thus far: English is neither precise nor terse,
making English a lousy language for describing languages (a lousy meta-language). Just as
languages themselves evolve over time, the manner in which computer scientists have specified
languages has evolved.

###This section defines three such…

###CFG notation is used for theory discussions in advanced topic section.

###what do they have in common?

###follow chrono sequence of meta-language definition

DO NOT DISTRIBUTE! Copyright 1999 Terence Parr

11

Context-Free Grammar Notation

[Skip this section if you do not plan on reading the Advanced Topics section]

The first meta-language used extensively and the meta-language preferred by computer language
theorists is called CFG (context-free grammar) notation (there are a number of dialects). CFG
specifications provide a list of rules with left- and right-hand sides separated by a right-arrow
symbol. One of the rules is identified as the start rule or start symbol, implying that the overall
structure of any sentence in the language is described by that rule. The left-hand side specifies
the name of the substructure you are defining and the right hand side specifies the actual structure
(sometimes called a production): a sequence of references to other rules and/or words in the
vocabulary. The rules are of the form:

Rulename → finite sequence of rule references and token references

For convenience, rule names (nonterminals) are always single uppercase letters and vocabulary
words, terminals, are always single lowercase letters. CFG grammars are presumed to specify the
syntactic structure not the lexical structure so terminals are token types really that represent a
class of input symbols. For example, you could decree that rule I means "integer" and that token
d represents any digit. Consequently, to specify that an integer can be any single digit, you would
write:

I → d

You could also have used a higher-level symbol and said that token i represents any integer.

Non-character literal input symbols are allowed as long as they are one character (such as the ’+’
sign). If a structure name can be one of several alternatives, the structure name is repeated on the
left-hand side. The follow grammar indicates that rule A can be either a or b.

A → a
A → b

The right-hand side may be empty:

A →

Empty productions are useful for saying that a construct is optional. For example, the following
grammar generates the language a or ab.

A → aB
B → b
B →

Sometimes you will see empty productions written:

A → ε

The ε is used as a placeholder sort of like the IBM manuals that say "this page left intentionally
blank" and is the reason that empty productions are often called epsilon productions.

Using CFG notation, it is easy to describe an arithmetic expression language with plus and
multiply operators as generated by the pushdown machine seen above. In the following grammar,
E is the start rule.

DO NOT DISTRIBUTE! Copyright 1999 Terence Parr

12

E → i
E → E+E
E → E*E

The first rule, E for "expression", defines three alternative substructures or productions as they
are called. The first production indicates that an expression can be an integer. The second and
third productions say that an expression can be two smaller expressions separated by a ’+’ or a ’*’
sign, respectively.

How can you generate "i+i*i" from this grammar? Start with the second alternative of E, E+E,
and then replace the second reference to E by E*E, yielding E+E*E. Finally, replace all
references to E with i. Recall that the pushdown machine and, hence this grammar, are
ambiguous because the grammar can also generate "i+i*i" in a different way (begin with rule
three not rule two). In summary, the difference looks like this:

1. E ⇒ E+E ⇒ E+E*E ⇒ i+i*i

2. E ⇒ E*E ⇒ E+E*E ⇒ i+i*i

Regular Expression Notation

Classically, CFG used for syntax and regular expression notation used for lexical languages.

"match" or "generate" in this section?

CFG notation is great for describing pushdown machines, but is overkill for describing finite
machines because finite machines do not have submachines that you can call; right-hand sides
cannot reference other rules. Instead, programmers normally use regular expressions to specify
finite machines. Oddly, the regular expression syntax is more complicated, but only because,
without recursion (no stack), you cannot specify repeated structures. A regular expression does
need a rule name, but when used in translator generators, they are written as rules with rule names
to identify the myriad of expressions describing vocabulary symbols. An expression contains
single characters and possibly constructs to specify looping and so on. The following rule has a
regular expression right-hand side and generates a single input sequence, "abc":

simple : abc ;

The ’:’ separates the left- and right-hand sides and the ’;’ terminates the rule. Alternative
substructures are separated with ’|’. The following rule matches either "abc" or "duh".

simple : abc
 | duh
 ;

You will also see character sets such as [a-z0-9], which means any lowercase letter or any
digit.

Regular expressions also have constructs to modify the number of times an element can occur:

Construct Description Example

expression? The expression is optional. ab?c means abc or ac.
a(b|z)?c means abc,
azc or ac.

DO NOT DISTRIBUTE! Copyright 1999 Terence Parr

13

expression* The expression can occur zero or more
times. This is called the closure of the
expression.

[a-zA-Z][a-zA-Z0-9]
describes any variable
name consisting of letters
or digits as long as it
begins with a letter.

expression+ The expression can occur one or more
times. This is called the positive
closure of the expression.

(0|1)* means a binary
number.

BNF Notation

Language theorists love CFG notation, but most language reference guides use BNF (Backus-
Naur Form) notation, which is really just a more readable version of CFG notation. All rule
names are surrounded by <…> and → is replaced with "::=". Also, alternative productions are
separated by '|' rather than repeating the rule name on the left-hand side. BNF is more verbose,
but has the advantage that you can write meaningful rule names and you are not constrained vis-
à-vis capitalization. Rules are therefore of the form:

<rulename> ::= production 1
 | production 2
 …
 | production n

The eight rules for the subset of English described previously are written in full English, but you
can say the same thing more tersely as follows using BNF notation:

<Sentence > ::= <Subject > <VerbPhrase > <Object >
<Subject > ::= <Determiner > <Noun>
<VerbPhrase > ::= <Verb > <Adverb >
<Noun> ::= John | dog
<Verb > ::= gesticulates | ate
<Adverb > ::= vigorously | ravenously |
<Object > ::= steak |
<Determiner > ::= The |

dffd

YACC Notation

YACC[### ref] introduced a simpler derivative without <…> at cost of upper/lower case
indicator for terminal/nonterminal. YACC notation is important as it was the de facto standard for
around 20 years; YACC notation is the progenitor for ANTLR notation. It is a more terse version
of BNF.

sentence : subject verbPhrase object ;
subject : determiner noun;
verbPhrase : verb adverb ;
noun : "John"
 | "dog"
 ;
verb : "gesticulates"
 | "ate"
 ;
adverb : "vigorously"

DO NOT DISTRIBUTE! Copyright 1999 Terence Parr

14

 | "ravenously"
 |
 ;
object : "steak"
 |
 ;
determiner : "The"
 |
 ;

ANTLR Notation

ANTLR uses YACC notation with EBNF constructs, borrowed from regular expression notation

sentence : subject verbPhrase (object)? ;
subject : (determiner)? noun;
verbPhrase : verb (adverb)? ;
noun : "John"
 | "dog"
 ;
verb : "gesticulates"
 | "ate"
 ;
adverb : "vigorously"
 | "ravenously"
 ;
object : "steak"
 ;
determiner : "The"
 ;

Make easier using categories of words.

sentence : subject verbPhrase (object)? ;
subject : (DETERMINER)? NOUN;
verbPhrase : VERB (ADVERB)? ;
object : NOUN ;

But, this is even looser.

Talk about using char as elements to show same syntax. No reason limited to token types.

describe looping / grouping

categories: group instances of ids into ID. don’t have choices necessarily at each node.

How to group things…left/right associative…

Grammars, interestingly enough, conforms to a language (a meta-language) in its own. ANTLR
notation in its own words:###.

for any language, infinite # of CFGs.

Regular Grammars

Map finite machine to grammar and you have a special property that right-hand sides are
composed exclusively of vocabulary symbols or at most a single rule reference at the extreme
right edge. (check the last part###).

DO NOT DISTRIBUTE! Copyright 1999 Terence Parr

15

Can use for char themselves.

People often use rexprs.

Here is where I start to unify things.

Tree Grammars

This should raise a few eyebrows. How can you write a grammar for a two-dimensional structure
like a tree? Easy. Add notation to indicate the tree structure ala LISP.

expr : #(PLUS expr expr)
 | INT
 ;

Why would you want to specify a two-dimensional language? Intermediate forms.###

Derivations

Now that they you are familiar with languages and grammars that describe them, …

relate to walk of machine diagram.

⇒ε

apply production/rule

order of derivation not specified in tree? same tree structure associated with multiple derivations.

leftmost rightmost derivations: when more than one nonterminal in a sentential form, specifies
which to pick.

Also the case as you saw above, there may be more than a single tree for a single string that has
multiple derivations. That is, different derivations can lead to the same tree if only a order of
substitution issue and diff deriv can lead to diff trees. 1 string has 1 or more trees and each tree
has 1 or more derivations. each tree, there is a unique rightmost and leftmost deriv.

parse trees

Structure Imparts Meaning

This highlights very clearly that structure imparts meaning!

Give sentence with clear meaning and then add commas to change subject/meaning.

Terence says the emperor has no clothes

versus

Terence, says the emperor, has no clothes

##You saw earlier that grammatical does not imply sensible. It is also the case that the way you
group things projects meaning for sure.

Ambiguities; else-ambiguity (sometimes need more than grammar)

DO NOT DISTRIBUTE! Copyright 1999 Terence Parr

16

unfortunately necessary: most languages have pushdown machine description and set of
additional constraints; use C++ example of expression vs declaration. Find slide in talks.

Different kinds of languages (Type 0..4)

that also highlights the gap between structure and meaning

Talk about them in context of grammars; show what the grammar constraints are.

Regular Languages (Type 4)

Content-Free Languages (Type 3)

Context-Sensitive Languages (Type 2)

variable decl must precede use. Can’t do so we use ID placeholder and augment parser with
symbol table memory. Or use BASIC for loop and next VAR statement as context.

Remember the gap described above between what you want to describe and what you can? Well,
CFG are a subset of grammars.

Grey area between what is syntax and what is semantics sometimes (like the variable use before
def thing).

Languages (Type 0)

What to do in the syntax versus semantics (like (…)7 vs ({7}? …)*

